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ThisPresentation

Today, I’ll discuss:

1. the astrocytic inspiration of our rhythmic sharing algorithm,

2. the rhythmic sharing algorithm,

3. howour algorithmenhances drift in a dataset, and the result of
combining rhythmic sharingwith concept drift detectors, and,

4. howa single rhythmic sharing instance can learn and extrapolate
to different dynamics, while ESNs cannot.



Biological Inspiration



TheBrain: Not JustNeurons

Most neuromorphicmachine learning algorithms are inspired by
neurons or compute via spiking.

However,neuronsarenot theonly cells in the brain andnot all
cells communicate throughspiking!

Other cells in the brain play an essential and understudied role in
cognition.
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AstrocytesandGlialCells

Astrocytes are glial cells involved in cognition through the
tripartite synapse [1].
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RhythmicSharing



RSAlgorithm

The rhythmic sharing algorithmwasoriginally proposed inKang
and Losert [5].

Weproposed twohypotheses about learning in neurons after
observing astrocytes’ rhythmic activity:

• Learning involves rhythmic variations in link strength, and,

• Learning occurs via coordination of the phases of these rhythmic
variations.

We implement these in a reservoir computingmodel
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RSAlgorithm–ReservoirComputing

Reservoir computing is intricately linked to neuroscience,where
it was first developed asmodels of sensorimotor processes [6].

Thismakes themanatural fit for ourmodel of the interactions
between astrocytes and neurons.



RSAlgorithm–ReservoirComputing

Thebase of rhythmic sharing is an echo-state networkwith
sparse connectivity



RSAlgorithm–NodeUpdate

For each timestep, the value of the nodes is set, based on the values of
the nodes and inputs they are connected to.

𝑛(𝑡 + Δ𝑡) = 𝛼𝑛(𝑡) + (1 − 𝛼) 𝑡𝑎𝑛ℎ(𝐴∼𝑛(𝑡) + 𝑊 𝑖𝑛𝑢(𝑡))
𝑊𝑖𝑛 ∈ ℝ𝑁×𝐶 is the inputweightmatrix (scaled by an inputweight hyper-
parameter) and𝑢(𝑡) ∈ ℝ𝐶 is the input to the system.

This is identical to an echo state network,with theexceptionof the
modulatedadjacencymatrix𝐴∼ ∈ ℝ𝑁×𝑁 :

𝐴∼(𝑡) = 𝐴 ∘ (1 − 𝑚
2 (1 + 𝑠𝑖𝑛[Φ(𝑡)]))
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RSAlgorithm–Oscillations
Themodulated adjacencymatrix𝐴∼ ∈ ℝ𝑁×𝑁 function showshow the
phases,Φ, control the strength of the nodes’ connections.

AKuramoto-inspiredmodel controls synchronization of subgroups of
phases based on the input [7].
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This is theKuramotomodel function that controls the phases of the
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RSAlgorithm–Synchrony
Asproposed, themodel learns as groupsof links becomesynchronized.

This provides a path for the information to flow through themodel. We
measure it with the order parameter𝑅: 𝑅(𝑡)𝑒𝑖⟨Φ⟩(𝑡) = 1

𝑁𝑙
∑𝑁𝑙

𝑘=1 𝑒𝑖Φ𝑘(𝑡)



RSAlgorithm–Reaction toChangingDynamics

When the input dynamics change, themodel adjustswhich nodes
are synchronized tomatch.
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RSAlgorithm–Reaction toChangingDynamics

This inspired us to analyze the algorithm’s applicability to anomaly and
concept drift detection.



RSAlgorithm–Per-InputSynchrony

Initially, we believed that this changing synchronywas enough to detect
concept drift. However, it only captured largedynamical shifts, not
subtle changes.

Therefore, we introducedper-input synchrony, which onlymeasures
the synchrony of links connected to each inputs’ nodes:
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1
|𝐿𝑐|

∑
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𝑒𝑖Φ𝑘(𝑡)

Weshow thatper-input synchronygenerates rich features that
amplify drifts, improving performanceof detection algorithms.
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ConceptDriftDetection



ConceptDrift

The concept drift detection task focuses on detectingwhen the
distribution that an input is drawn fromchanges.

It is an important problem inmachine learning sincemostmodels
are brittle to it, and evenminor drifts result inworse performance.

Weutilize the ability of ourmodel to highlight drifts to improve the
performanceof different algorithmson three datasets.



ConceptDrift –Detectors

We test the performanceof ourmodel applied to generic concept
drift detection algorithms, including:

• Autoencoder reconstructionmodels [8]

• Clustering algorithms

• Maximummeandiscrepancy [9]

Additionally, we test SOTA, dataset-tuned detectors

• Neural System Identification andBayesian Filtering (NSIBF) [10]

• Bidirectional DynamicModel (BDM) [11]
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NASAC-MAPSSDataset –Overview

TheNASAC-MAPSSdataset includes recordings fromsensors
on a set of simulated turbofan engines as they catastrophically
degrade.

Following priorwork, we consider the last 40%of each recording
anomalous [12, 13].



NASAC-MAPSSDataset –Per-InputSynchrony
Per-input synchrony begins emphasizing thedrifts before the 60%
cutoff
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NASAC-MAPSSDataset –DetectorPerformance

Per-input synchronyelevates theperformanceof thegeneric
models.

Method Prec. Rec. F1 Del.

AE 0.561 0.629 0.593 16.58
with RS 0.463 0.941 0.621 0.58

MMD 0.441 0.991 0.610 0.00
with RS 0.657 0.822 0.730 19.50

Clustering 0.413 1.000 0.585 0.00
with RS 0.860 0.804 0.831 0.58



WaDIandSWATDatasets–Overview

The highlights of our results are on theSecureWater Treatment testbed
(SWaT) dataset andwater distribution testbed (WADI) dataset [14, 15]

These are complicated datasets of real sensors and actuators treatingwater



WaDIandSWATDatasets–Per-InputSynchrony

Per-input synchrony reacts to both real cyberattacks and normal drifts,
showing its usefulness but potentially posing a problem for detectors.
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WaDIandSWATDatasets–SimpleDetectors

Ourmethodology improves performanceon the simple, generic
detectors:

SWaTDataset WADIDataset
Method Precision Recall F1-Score Precision Recall F1-Score

AE 0.028 0.492 0.052 0.202 0.55 0.252
with RS 0.038 1.000 0.073 0.187 0.673 0.284

MMD 0.045 0.747 0.084 0.225 0.012 0.024
with RS 0.142 0.172 0.156 0.215 0.611 0.318

Clustering 0.039 0.998 0.075 0.154 1.000 0.268
with RS 0.139 0.840 0.238 0.192 0.962 0.321



WaDIandSWATDatasets–SOTADetectors

Finally,ourmethodachievesSOTAresultswith theNSIBFmodel [10].

SWaTDataset WADIDataset
Method Precision Recall F1-Score Precision Recall F1-Score

DAGMM[16] 0.957 0.643 0.769 0.904 0.131 0.228

USAD [17] 0.995 0.629 0.771 0.243 0.462 0.319

BDM [11] 0.991 0.685 0.811 0.276 0.593 0.377
with RS 0.972 0.631 0.765 0.130 0.557 0.210

NSIBF [10] 0.892 0.712 0.792 0.234 0.496 0.318
with RS 0.943 0.810 0.871 0.574 0.876 0.694

Per-input synchrony is a low-dimensional dynamical representation thatmatches the assumption of neural state-space
models likeNSIBFbut not the reconstruction-basedBDM.



ControlledDynamicsUsingSynchrony
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Aswe showed, training the rhythmic sharing network using input
withmultiple dynamics leads to different synchrony values

Butwhat happenswhenwepredict future dynamicswith this network?
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ControlledDynamics–PredictionofDifferentDynamics

Here, we show the results of predicting future dynamics after being
trained on both dynamics:

Rhythmic sharing is able to reproduceboth,while a generic ESNcreates a
combination of the two.
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Over twoworks, we have highlighted a new reservoir computing
paradigm, rhythmic sharing, and its applicability to the concept drift
detection task.

This algorithm is a culmination of our novel understanding of astrocytes
as controllers of neuronal cognition.

The algorithm implements twohypotheses of astrocytes’ role in
learning:
• Learning involves rhythmic variations in link strength, and,

• Learning occurs via coordination of the phases of these rhythmic
variations.
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While an echo-state network breaks down if presentedwith two
different input dynamics, rhythmic sharing retainsboth and can be
controlled to extract different dynamics that it has saved.
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Contributions
The resulting algorithm learns despite, and detects, changes in the
input data.

As themodel adjusts to a change in the data, it generates signals that
amplify the change. These signals significantly improve theability of
downstreamconceptdrift detectors.
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FutureWork–AlgorithmicDevelopment

Weplan to continueworking on understanding the rhythmic
sharing algorithm. Specifically, wewant to focus on:

• howhyperparameter selection changes performancewhen
extrapolating or detecting drifts,

• howwecan performdrift detection inmore complex
environments, and,

• howwecan apply our ability to learnmultiple sets of dynamics to
real-world datasets.



FutureWork–BiologyExperiments

Additionally, wewant to understand if themodel changes howwe
think about the brain. Some interesting connections suggested
by the algorithmare:

• the role of astrocytes during environmental or sensory change,

• if astrocyte synchronization alters neuronal computation, and,

• whether our algorithm’s abilitiesmap to in-vitro neuronal reservoir.
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