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The brain outperforms machine learning in several tasks, including:
* |earning and extrapolating from limited data with different modalities, and,

¢ anticipating, detecting, and adapting to concept drift
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and computation. We’re interested in:

¢ astrocytes as conductors of neuronal cognition

* hybrid systems that combine neuronal cultures and digital
computers

* Neuromorphic algorithms that unify theories of neural cognition
and computation



Summary -Our Lab

Losert Lab works on the intersection of neuroscience research
and computation. We’re interested in:

¢ astrocytes as conductors of neuronal cognition

* hybrid systems that combine neuronal cultures and digital
computers

* Neuromorphic algorithms that unify theories of neural cognition
and computation

One of these algorithms is rhythmic sharing, today’s topic



This Presentation

Today, I'll discuss:

1.
2.
3.

the astrocytic inspiration of our rhythmic sharing algorithm,
the rhythmic sharing algorithm,

how our algorithm enhances drift in a dataset, and the result of
combining rhythmic sharing with concept drift detectors, and,

. how a single rhythmic sharing instance can learn and extrapolate

to different dynamics, while ESNs cannot.



Biological Inspiration
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neurons or compute via spiking.



The Brain: Not Just Neurons

Most neuromorphic machine learning algorithms are inspired by
neurons or compute via spiking.

However, neurons are not the only cells in the brain and notall
cells communicate through spiking!

Other cells in the brain play an essential and understudied role in
cognition.



Astrocytes and Glial Cells

Astrocytes are glial cells involved in cognition through the
tripartite synapse [1].

Tripartite Synapsé




Astrocytes and Glial Cells

Through the tripartite synapse, astrocytes are essential to
cognition:
¢ Each astrocyte is connected to between 270,000 and 2 million synapses,
coordinating and monitoring them [2]

* Anastrocyte can be incredibly long, connecting to spatially-distant
neurons

* The astrocytes respond to the body’s state and to external stimulation [3]



Astrocytes and Glial Cells

Through the tripartite synapse, astrocytes are essential to
cognition:
¢ Each astrocyte is connected to between 270,000 and 2 million synapses,
coordinating and monitoring them [2]

* Anastrocyte can be incredibly long, connecting to spatially-distant
neurons

* The astrocytes respond to the body’s state and to external stimulation [3]
One way they potentially control neurons is through rhythmic,

physical forces on the synapses [4]. This inspired the rhythmic
sharing algorithm.



Rhythmic Sharing




RS Algorithm

The rhythmic sharing algorithm was originally proposed in Kang
and Losert [5].

We proposed two hypotheses about learning in neurons after
observing astrocytes’ rhythmic activity:

e Learninginvolves rhythmic variations in link strength, and,

e Learning occurs via coordination of the phases of these rhythmic
variations.



RS Algorithm

The rhythmic sharing algorithm was originally proposed in Kang
and Losert [5].

We proposed two hypotheses about learning in neurons after
observing astrocytes’ rhythmic activity:

e Learninginvolves rhythmic variations in link strength, and,

e Learning occurs via coordination of the phases of these rhythmic
variations.

We implement these in a reservoir computing model



RS Algorithm - Reservoir Computing

Reservoir computing is intricately linked to neuroscience, where
it was first developed as models of sensorimotor processes [6].

This makes them a natural fit for our model of the interactions
between astrocytes and neurons.



RS Algorithm - Reservoir Computing

The base of rhythmic sharing is an echo-state network with
sparse connectivity
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RS Algorithm - Node Update

For each timestep, the value of the nodes is set, based on the values of
the nodes and inputs they are connected to.
n(t + At) = an(t) + (1 — a) tanh(A~n(t) + W ,u(t))

Wi, € RNXC is the input weight matrix (scaled by an input weight hyper-
parameter) and u(t) € RC is the input to the system.



RS Algorithm - Node Update

For each timestep, the value of the nodes is set, based on the values of
the nodes and inputs they are connected to.

n(t + At) = an(t) + (1 — a) tanh(A~n(t) + W ,u(t))

Wi, € RNXC is the input weight matrix (scaled by an input weight hyper-
parameter) and u(t) € RC is the input to the system.

This is identical to an echo state network, with the exception of the
modulated adjacency matrix A~ € RV*N;

A@M=4a0(1- % (1 + sin[@()]))



RS Algorithm - Oscillations

The modulated adjacency matrix A~ € RV*N function shows how the
phases, @, control the strength of the nodes’ connections.

A Kuramoto-inspired model controls synchronization of subgroups of
phases based on the input [7].



RS Algorithm - Oscillations

The modulated adjacency matrix A~ € RV*N function shows how the
phases, @, control the strength of the nodes’ connections.

A Kuramoto-inspired model controls synchronization of subgroups of
phases based on the input [7].
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RS Algorithm - Oscillations

This is the Kuramoto model function that controls the phases of the
links.

do
dt
w, is the natural frequency of the nodes, ¥ is the local mean field, Qisthe

incidence matrix, €, and €, are coupling hyperparameters, and o denotes
element-wise multiplication.

= wo + (&1 + €,0Tn*) o sin (¥ — @ + )



RS Algorithm - Oscillations

This is the Kuramoto model function that controls the phases of the
links.

do
dt
w, is the natural frequency of the nodes, W is the local mean field, Qisthe

incidence matrix, €, and €, are coupling hyperparameters, and o denotes
element-wise multiplication.

= wo + (&1 + €,0Tn*) o sin (¥ — @ + )

The phases are updated each timestep: ®(t + At) = &(t) + At * ‘;—T



RS Algorithm - Synchrony

As proposed, the model learns as groups of links become synchronized.

This provides a path for the information to flow through the model. We
measure it with the order parameter R: R(¢)eX{®®) = Ni 211211 el k()
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RS Algorithm - Reaction to Changing Dynamics

When the input dynamics change, the model adjusts which nodes
are synchronized to match.

Tinput (t)
10

o I

‘“‘W‘ W “ “”““\/MH ) ) | o——

an il lﬂ ‘”"‘

b of Tinput(£)

) J_|_|_|_|_|__|_|_|_’_|\_
0.18




RS Algorithm - Reaction to Changing Dynamics

When the input dynamics change, the model adjusts which nodes
are synchronized to match.
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RS Algorithm - Reaction to Changing Dynamics

Zinput (t)
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This inspired us to analyze the algorithm’s applicability to anomaly and
concept drift detection.



RS Algorithm - Per-Input Synchrony

Initially, we believed that this changing synchrony was enough to detect
concept drift. However, it only captured large dynamical shifts, not
subtle changes.



RS Algorithm - Per-Input Synchrony

Initially, we believed that this changing synchrony was enough to detect
concept drift. However, it only captured large dynamical shifts, not
subtle changes.

Therefore, we introduced per-input synchrony, which only measures
the synchrony of links connected to each inputs’ nodes:

Rc(t)el<¢’>c(t) - Z elq)k(t)
|LC| keL(c)



RS Algorithm - Per-Input Synchrony

Initially, we believed that this changing synchrony was enough to detect
concept drift. However, it only captured large dynamical shifts, not
subtle changes.

Therefore, we introduced per-input synchrony, which only measures
the synchrony of links connected to each inputs’ nodes:

Rc(t)el<q>>c(t) - Z elq)k(t)
|LC| keL(c)

We show that per-input synchrony generates rich features that
amplify drifts, improving performance of detection algorithms.



Concept Drift Detection




Concept Drift

The concept drift detection task focuses on detecting when the
distribution that an input is drawn from changes.

It is an important problem in machine learning since most models
are brittle to it, and even minor drifts result in worse performance.

We utilize the ability of our model to highlight drifts to improve the
performance of different algorithms on three datasets.



Concept Drift - Detectors

We test the performance of our model applied to generic concept
drift detection algorithms, including:

* Autoencoder reconstruction models [8]
* Clustering algorithms

¢ Maximum mean discrepancy [9]



Concept Drift - Detectors

We test the performance of our model applied to generic concept
drift detection algorithms, including:

* Autoencoder reconstruction models [8]
* Clustering algorithms
¢ Maximum mean discrepancy [9]
Additionally, we test SOTA, dataset-tuned detectors
* Neural System Identification and Bayesian Filtering (NSIBF) [10]
« Bidirectional Dynamic Model (BDM) [11]



NASA C-MAPSS Dataset - Overview

The NASA C-MAPSS dataset includes recordings from sensors
on a set of simulated turbofan engines as they catastrophically
degrade.

Following prior work, we consider the last 40% of each recording
anomalous [12, 13].



NASA C-MAPSS Dataset - Per-Input Synchrony

Per-input synchrony begins emphasizing the drifts before the 60%
cutoff
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NASA C-MAPSS Dataset - Detector Performance

Per-input synchrony elevates the performance of the generic
models.

Method | Prec. Rec. F1 Del.

AE 0.561 0.629 0.593 16.58
0.463 0.941 0.621 0.58

MMD 0.441 0.991 0.610 0.00
0.657 0.822 0.730 19.50

Clustering 0.413 1.000 0.585 0.00
0.860 0.804 0.831 0.58




WaDI and SWAT Datasets - Overview

The highlights of our results are on the Secure Water Treatment testbed
(SWaT) dataset and water distribution testbed (WADI) dataset [14, 15]
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These are complicated datasets of real sensors and actuators treating water




WaDIl and SWAT Datasets - Per-Input Synchrony

Per-input synchrony reacts to both real cyberattacks and normal drifts,
showing its usefulness but potentially posing a problem for detectors.
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WaDIl and SWAT Datasets - Simple Detectors

Our methodology improves performance on the simple, generic
detectors:

SWaT Dataset WADI Dataset
Method Precision Recall F1-Score Precision Recall F1-Score
AE 0.028 0.492 0.052 0.202 0.55 0.252
0.038 1.000 0.073 0.187 0.673 0.284
MMD 0.045 0.747 0.084 0.225 0.012 0.024
0142 0.172 0.156 0.215 0.611 0.318

Clustering 0.039 0.998 0.075 0.154 1.000 0.268
0139 0.840 0.238 0.192 0.962 0.321




WaDI and SWAT Datasets - SOTA Detectors

Finally, our method achieves SOTA results with the NSIBF model [10].

SWaT Dataset WADI Dataset
Method Precision Recall F1-Score Precision Recall F1-Score
DAGMM[16] | 0.957 0.643 0.769 | 0.904 0131 0.228
USAD[17] | 0.995 0.629 0771 | 0.243 0.462 0.319
BDM[11] 0.991 0.685 0.811 0.276 0.593 0.377
0.972 0.631 0.765 0130 0.557 0.210
NSIBF [10] 0.892 0.712 0.792 0.234 0.496 0.318
0.943 0.810 0.871 0.574 0.876 0.694

Per-input synchrony is a low-dimensional dynamical representation that matches the assumption of neural state-space
models like NSIBF but not the reconstruction-based BDM.



Controlled Dynamics Using Synchrony




Controlled Dynamics - Training an RS Network

As we showed, training the rhythmic sharing network using input
with multiple dynamics leads to different synchrony values
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Controlled Dynamics - Training an RS Network

As we showed, training the rhythmic sharing network using input
with multiple dynamics leads to different synchrony values
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But what happens when we predict future dynamics with this network?



Controlled Dynamics - Prediction of Different Dynamics

Here, we show the results of predicting future dynamics after being

trained on both dynamics:
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Controlled Dynamics - Prediction of Different Dynamics

Here, we show the results of predicting future dynamics after being
trained on both dynamics:
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Rhythmic sharingis able to reproduce both, while a generic ESN creates a
combination of the two.



Controlled Dynamics - Synchrony Freezing

Knowing this, can we control which dynamics we reproduce?



Controlled Dynamics - Synchrony Freezing

Knowing this, can we control which dynamics we reproduce?

Yes! We can freeze the synchrony and introduce a new variable,
the mean phase (®).

By setting the mean phase, we lock the network in a static
configuration.



Controlled Dynamics - Mean Phase

Each static configuration predicts a different set of dynamics.



Controlled Dynamics - Mean Phase

Each static configuration predicts a different set of dynamics.
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Controlled Dynamics - Mean Phase

Each static configuration predicts a different set of dynamics.
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Controlled Dynamics - Mean Phase

Each static configuration predicts a different set of dynamics.
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Controlled Dynamics - Mean Phase

Each static configuration predicts a different set of dynamics.
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Rhythmic sharing’s oscillations make it equivalent to many different ESNs!



Conclusions
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Contributions

Over two works, we have highlighted a new reservoir computing
paradigm, rhythmic sharing, and its applicability to the concept drift
detection task.

This algorithm is a culmination of our novel understanding of astrocytes
as controllers of neuronal cognition.

The algorithm implements two hypotheses of astrocytes’role in
learning:

* Learninginvolves rhythmic variations in link strength, and,

* Learning occurs via coordination of the phases of these rhythmic
variations.



Contributions

The resulting algorithm learns despite, and detects, changes in the
input data.



Contributions

The resulting algorithm learns despite, and detects, changes in the

input data.

While an echo-state network breaks down if presented with two
different input dynamics, rhythmic sharing retains both and can be
controlled to extract different dynamics that it has saved.
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Contributions

The resulting algorithm learns despite, and detects, changes in the
input data.

As the model adjusts to a change in the data, it generates signals that
amplify the change. These signals significantly improve the ability of
downstream concept drift detectors.
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Future Work - Algorithmic Development

We plan to continue working on understanding the rhythmic
sharing algorithm. Specifically, we want to focus on:

* how hyperparameter selection changes performance when
extrapolating or detecting drifts,

* how we can perform drift detection in more complex
environments, and,

* how we can apply our ability to learn multiple sets of dynamics to
real-world datasets.



Future Work - Biology Experiments

Additionally, we want to understand if the model changes how we
think about the brain. Some interesting connections suggested
by the algorithm are:

 therole of astrocytes during environmental or sensory change,
¢ if astrocyte synchronization alters neuronal computation, and,

* whether our algorithm’s abilities map to in-vitro neuronal reservoir.
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