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The brain outperforms machine learning in several tasks, including
* learning and extrapolating from limited data with different modalities

¢ anticipating, detecting, and adapting to concept drift
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¢ astrocytes as conductors of neuronal cognition

* hybrid systems that combine neuronal cultures and digital
computers

* Neuromorphic algorithms unify theories of neural cognition and
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Summary -Our Lab

Losert Lab works on the intersection of neuroscience research
and computation. We’re interested in:

¢ astrocytes as conductors of neuronal cognition

* hybrid systems that combine neuronal cultures and digital
computers

* Neuromorphic algorithms unify theories of neural cognition and
computation

One of these algorithms is rhythmic sharing, today’s topic



This Presentation

I’ll give an overview of:

1. The astrocytic inspiration of our rhythmic sharing algorithm

2. The rhythmic sharing algorithm, and how per-input
synchrony enhances drift in a dataset

3. The concept drift detection task

4. The result of combining rhythmic sharing with drift detection
algorithms on complex datasets



Biological Inspiration




Astrocytes and Glial Cells

Astrocytes are glial cells involved in cognition through the
tripartite synapse [1].

Tripartite Synapsé
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Through the tripartite synapse, astrocytes are essential to
cognition:
¢ Eachastrocyte is connects to between 270,000 and 2 million synapses,
coordinating and monitoring them [2]

* Anastrocyte can be incredibly long, connecting to spatially-distant
neurons

* The astrocytes respond to the body’s state and to external stimulation [3]



Astrocytes and Glial Cells

Through the tripartite synapse, astrocytes are essential to
cognition:
¢ Eachastrocyte is connects to between 270,000 and 2 million synapses,
coordinating and monitoring them [2]

* Anastrocyte can be incredibly long, connecting to spatially-distant
neurons

* The astrocytes respond to the body’s state and to external stimulation [3]
One way they potentially control neurons is through rhythmic,

physical force on the synapses [4]. This inspired the rhythmic
sharing algorithm.



Rhythmic Sharing




RS Algorithm

The rhythmic sharing algorithm was originally proposed in Kang
and Losert [5].

We proposed two hypotheses about learning in neurons after
observing astrocytes’ rhythmic activity:

e Learninginvolves rhythmic variations in link strength, and,

e Learning occurs via coordination of the phases of these rhythmic
variations.

The algorithm implements these in a reservoir computing model



RS Algorithm - Reservoir Computing

The base of rhythmic sharing is an echo-state network with
sparse connectivity
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RS Algorithm - Oscillations

Initially, the strength of the links oscillate with random phases. A
Kuramoto-inspired model controls synchronization of subgroups
of phases based on the input [6]
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RS Algorithm - Oscillations

This is the Kuramoto model function that controls the phases of
the links.

do .
yn = wg + (6, + 6,0Tn*) o sin (¥ — @ + ) (1)
Here, @ denotes the phase matrix, w, is the natural frequency of the nodes, ¥ is
the local mean field, Q is the incidence matrix, €; and €, are coupling
hyperparameters, and o denotes element-wise multiplication.



RS Algorithm - Synchrony

As proposed, the model learns as groups of links become synchronized.

Synchrony provide a path for the information to flow through the model.
We measure synchrony with the Kuramoto order parameter R.
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RS Algorithm - Reaction to Changing Dynamics

The synchrony reacts to different dynamics because the model
adjusts which nodes are synchronized to match the new input.
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RS Algorithm - Per-Input Synchrony

Initially, we believed that this changing synchrony was enough to
detect concept drift. However, it only captured large dynamical
shifts, not subtle changes.
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RS Algorithm - Per-Input Synchrony

Initially, we believed that this changing synchrony was enough to
detect concept drift. However, it only captured large dynamical
shifts, not subtle changes.

Therefore, we introduced per-input synchrony, which only
measures the synchrony of links connected to each inputs’
nodes.

We show that per-input synchrony generates rich features that
amplify drifts, improving performance of detection algorithms.



Concept Drift Detection




Concept Drift

The concept drift detection task focuses on detecting when the
distribution that an input is drawn from changes.

It is an important problem in machine learning since most models
are brittle to it, and even minor drifts result in worse performance.

We utilize the ability of our model to highlight drifts to improve the
performance of different algorithms on three datasets.



Concept Drift - Detectors

We test the performance of our model applied to generic concept
drift detection algorithms, including:

* Autoencoder reconstruction models [7]
* Clustering algorithms
¢ Maximum mean discrepancy [8]
Additionally, we test SOTA, dataset-tuned detectors
* Neural System Identification and Bayesian Filtering (NSIBF) [9]
« Bidirectional Dynamic Model (BDM) [10]



Our Results




NASA C-MAPSS Dataset - Overview

The NASA C-MAPSS dataset includes recordings from sensors
on a set of simulated turbofan engines as they catastrophically
degrade.

Following prior work, we consider the last 40% of each recording
anomalous [11,12].



NASA C-MAPSS Dataset - Per-Input Synchrony
Per-input synchrony begins emphasizing the drifts before the 60% cutoff
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NASA C-MAPSS Dataset - Detector Performance

Per-input synchrony elevates the performance of the generic
models.

Method | Prec. Rec. F1 Del.

AE 0.561 0.629 0.593 16.58
0.463 0.941 0.621 0.58

MMD 0.441 0.991 0.610 0.00
0.657 0.822 0.730 19.50

Clustering 0.413 1.000 0.585 0.00
0.860 0.804 0.831 0.58




WaDIl and SWAT Datasets - Overview

The highlights of our results are on the Secure Water Treatment testbed
(SWaT) dataset and water distribution testbed (WADI) dataset [13, 14]
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These are complicated datasets of real sensors and actuators treating water




WaDIl and SWAT Datasets - Per-Input Synchrony

Per-input synchrony reacts to both real cyberattacks and normal drifts,
showing its usefulness but potentially posing a problem for detectors
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WaDIl and SWAT Datasets - Simple Detectors

Our methodology improves performance on the simple, generic
detectors

SWaT Dataset WADI Dataset

Method Precision Recall F1-Score Precision Recall F1-Score
AE 0.028 0.492 0.052 0.202 0.550 0.252
0.038 1.000 0.073 0.187 0.673 0.284

MMD 0.045 0.747 0.084 0.225 0.012 0.024
0.142 0172 0.156 0.215 0.611 0.318

Clustering 0.039 0.998 0.075 0154 1.000 0.268
0139 0.840 0.238 0.192 0.962 0.321




WaDI and SWAT Datasets - SOTA Detectors

Finally, our method achieves SOTA results with the NSIBF model [9]

SWaT Dataset WADI Dataset
Method Precision Recall F1-Score Precision Recall F1-Score
DAGMM[15] | 0.957 0.643 0769 | 0.904 0.131 0.228
USAD[16] | 0.995 0.629 0771 | 0.243 0.462 0.319
BDM[10] 0.991 0.685 0.811 0.276 0.593 0.377
0.972 0.631 0.765 013 0.557 0.21
NSIBF [9] 0.892 0.712 0.792 0.234 0.496 0.318
0.943 0.810 0.871 0.574 0.876 0.694

Per-input synchrony is a low-dimensional dynamical representation that matches the assumption of neural state-space
models like NSIBF but not the reconstruction-based BDM



Conclusions
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Contributions

We previously proposed an algorithm that, from observations in
in-vitro systems, tested two hypotheses of neural learning.

Here, we show that the algorithm is sensitive to drift in an input,
and we introduce a new method, per-input synchrony, that
emphasizes these drifts.

We show that using per-input synchrony as features for detection
algorithms improves their performance, leading to SOTA results
on the SWaT and WADI datasets.



Future Work

We plan to continue working on understanding the rhythmic
sharing algorithm. Specifically, we want to focus on:

¢ How hyperparameter selection changes performance.

¢ How we can perform drift detection in more complex
environments.

* How rhythmic sharing changes our understanding of neuronal
cultures or reservoir systems.

¢ How rhythmic sharing works with multidynamic systems



Future Work - Multidynamic Systems

Previously, we saw that a rhythmic sharing reservoir trained on two
different attractors can reproduce both, while a generic reservoir
reproduces a combination of the two.

Training data with periodic and chaotic attractors

A Wil —

Prediction, initialized on each attractor

We want to apply this, with our drift detection ability, to real-world datasets
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Appendix - Equations

Node Update:
n(t + At) = an(t) + (1 — a) tanh(A~n(t) + W ;,,u(t))
Modulated adjacency matrix, A~ € RN*N;

- m .
A~()=Ao (1 = sm[CD(t)]))



Appendix - Equations

Link phase update:
D(t + At) = O(t) + At * N
Synchrony:

1 l
(P)(t) — § i Py (t
R(t)el< >( ) ﬁl Z el k( )
Per-input synchrony:

1 .
R (t)e (t) - — Z elq)k(t)
[Lel keL(c)
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