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ThisPresentation

I’ll give an overviewof:

1. The astrocytic inspiration of our rhythmic sharing algorithm

2. The rhythmic sharing algorithm, and howper-input
synchrony enhances drift in a dataset

3. The concept drift detection task

4. The result of combining rhythmic sharingwith drift detection
algorithmson complex datasets



Biological Inspiration



AstrocytesandGlialCells

Astrocytes are glial cells involved in cognition through the
tripartite synapse [1].
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• The astrocytes respond to the body’s state and to external stimulation [3]

Oneway they potentially control neurons is through rhythmic,
physical force on the synapses [4]. This inspired the rhythmic
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RhythmicSharing



RSAlgorithm

The rhythmic sharing algorithmwasoriginally proposed inKang
and Losert [5].

Weproposed twohypotheses about learning in neurons after
observing astrocytes’ rhythmic activity:

• Learning involves rhythmic variations in link strength, and,

• Learning occurs via coordination of the phases of these rhythmic
variations.

The algorithm implements these in a reservoir computingmodel



RSAlgorithm–ReservoirComputing

Thebase of rhythmic sharing is an echo-state networkwith
sparse connectivity



RSAlgorithm–Oscillations

Initially, the strength of the links oscillatewith randomphases. A
Kuramoto-inspiredmodel controls synchronization of subgroups
of phases based on the input [6]



RSAlgorithm–Oscillations

This is theKuramotomodel function that controls the phases of
the links.

𝑑Φ
𝑑𝑡 = 𝜔0 + (𝜖1 + 𝜖2𝑄̂𝑇𝑛∗) ∘ 𝑠𝑖𝑛 (Ψ − Φ + 𝛾) (1)

Here,Φdenotes the phasematrix,𝜔0 is the natural frequency of the nodes,Ψ is
the localmean field, 𝑄̂ is the incidencematrix, 𝜖1 and 𝜖2 are coupling
hyperparameters, and ∘denotes element-wisemultiplication.



RSAlgorithm–Synchrony
Asproposed, themodel learns as groupsof links becomesynchronized.

Synchrony provide a path for the information to flow through themodel.
Wemeasure synchronywith theKuramoto order parameter𝑅.



RSAlgorithm–Reaction toChangingDynamics

The synchrony reacts to different dynamics because themodel
adjustswhich nodes are synchronized tomatch the new input.



RSAlgorithm–Per-InputSynchrony

Initially, we believed that this changing synchronywas enough to
detect concept drift. However, it only captured large dynamical
shifts, not subtle changes.

Therefore, we introducedper-input synchrony, which only
measures the synchrony of links connected to each inputs’
nodes.

We show that per-input synchrony generates rich features that
amplify drifts, improving performanceof detection algorithms.
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ConceptDriftDetection



ConceptDrift

The concept drift detection task focuses on detectingwhen the
distribution that an input is drawn fromchanges.

It is an important problem inmachine learning sincemostmodels
are brittle to it, and evenminor drifts result inworse performance.

Weutilize the ability of ourmodel to highlight drifts to improve the
performanceof different algorithmson three datasets.



ConceptDrift –Detectors

We test the performanceof ourmodel applied to generic concept
drift detection algorithms, including:

• Autoencoder reconstructionmodels [7]

• Clustering algorithms

• Maximummeandiscrepancy [8]

Additionally, we test SOTA, dataset-tuned detectors

• Neural System Identification andBayesian Filtering (NSIBF) [9]

• Bidirectional DynamicModel (BDM) [10]



OurResults



NASAC-MAPSSDataset –Overview

TheNASAC-MAPSSdataset includes recordings fromsensors
on a set of simulated turbofan engines as they catastrophically
degrade.

Following priorwork, we consider the last 40%of each recording
anomalous [11, 12].



NASAC-MAPSSDataset –Per-InputSynchrony
Per-input synchronybeginsemphasizing thedrifts before the 60%cutoff
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NASAC-MAPSSDataset –DetectorPerformance

Per-input synchrony elevates the performanceof the generic
models.

Method Prec. Rec. F1 Del.

AE 0.561 0.629 0.593 16.58
with RS 0.463 0.941 0.621 0.58

MMD 0.441 0.991 0.610 0.00
with RS 0.657 0.822 0.730 19.50

Clustering 0.413 1.000 0.585 0.00
with RS 0.860 0.804 0.831 0.58



WaDIandSWATDatasets–Overview
The highlights of our results are on theSecureWater Treatment testbed
(SWaT) dataset andwater distribution testbed (WADI) dataset [13, 14]

These are complicated datasets of real sensors and actuators treatingwater



WaDIandSWATDatasets–Per-InputSynchrony

Per-input synchrony reacts to both real cyberattacks and normal drifts,
showing its usefulness but potentially posing a problem for detectors
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WaDIandSWATDatasets–SimpleDetectors

Ourmethodology improves performanceon the simple, generic
detectors

SWaTDataset WADIDataset
Method Precision Recall F1-Score Precision Recall F1-Score

AE 0.028 0.492 0.052 0.202 0.550 0.252
with RS 0.038 1.000 0.073 0.187 0.673 0.284

MMD 0.045 0.747 0.084 0.225 0.012 0.024
with RS 0.142 0.172 0.156 0.215 0.611 0.318

Clustering 0.039 0.998 0.075 0.154 1.000 0.268
with RS 0.139 0.840 0.238 0.192 0.962 0.321



WaDIandSWATDatasets–SOTADetectors

Finally, ourmethod achievesSOTA resultswith theNSIBFmodel [9]

SWaTDataset WADIDataset
Method Precision Recall F1-Score Precision Recall F1-Score

DAGMM[15] 0.957 0.643 0.769 0.904 0.131 0.228

USAD [16] 0.995 0.629 0.771 0.243 0.462 0.319

BDM [10] 0.991 0.685 0.811 0.276 0.593 0.377
with RS 0.972 0.631 0.765 0.13 0.557 0.21

NSIBF [9] 0.892 0.712 0.792 0.234 0.496 0.318
with RS 0.943 0.810 0.871 0.574 0.876 0.694

Per-input synchrony is a low-dimensional dynamical representation thatmatches the assumption of neural state-space
models likeNSIBFbut not the reconstruction-basedBDM



Conclusions



Contributions

Wepreviously proposed an algorithm that, fromobservations in
in-vitro systems, tested twohypotheses of neural learning.

Here, we show that the algorithm is sensitive to drift in an input,
andwe introduce a newmethod, per-input synchrony, that
emphasizes these drifts.

We show that using per-input synchrony as features for detection
algorithms improves their performance, leading toSOTA results
on theSWaTandWADI datasets.



Contributions

Wepreviously proposed an algorithm that, fromobservations in
in-vitro systems, tested twohypotheses of neural learning.

Here, we show that the algorithm is sensitive to drift in an input,
andwe introduce a newmethod, per-input synchrony, that
emphasizes these drifts.

We show that using per-input synchrony as features for detection
algorithms improves their performance, leading toSOTA results
on theSWaTandWADI datasets.



Contributions

Wepreviously proposed an algorithm that, fromobservations in
in-vitro systems, tested twohypotheses of neural learning.

Here, we show that the algorithm is sensitive to drift in an input,
andwe introduce a newmethod, per-input synchrony, that
emphasizes these drifts.

We show that using per-input synchrony as features for detection
algorithms improves their performance, leading toSOTA results
on theSWaTandWADI datasets.



FutureWork

Weplan to continueworking on understanding the rhythmic
sharing algorithm. Specifically, wewant to focus on:

• Howhyperparameter selection changes performance.

• Howwecanperformdrift detection inmore complex
environments.

• How rhythmic sharing changes our understanding of neuronal
cultures or reservoir systems.

• How rhythmic sharingworkswithmultidynamic systems



FutureWork–MultidynamicSystems

Previously, we saw that a rhythmic sharing reservoir trained on two
different attractors can reproduce both, while a generic reservoir
reproduces a combination of the two.

Wewant to apply this, with our drift detection ability, to real-world datasets
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Appendix–Equations

NodeUpdate:

𝑛(𝑡 + Δ𝑡) = 𝛼𝑛(𝑡) + (1 − 𝛼) 𝑡𝑎𝑛ℎ(𝐴∼𝑛(𝑡) + 𝑊 𝑖𝑛𝑢(𝑡))

Modulated adjacencymatrix,𝐴∼ ∈ ℝ𝑁×𝑁 :

𝐴∼(𝑡) = 𝐴 ∘ (1 − 𝑚
2 (1 + 𝑠𝑖𝑛[Φ(𝑡)]))



Appendix–Equations

Link phase update:

Φ(𝑡 + Δ𝑡) = Φ(𝑡) + Δ𝑡 ∗ 𝑑Φ𝑑𝑡
Synchrony:

𝑅(𝑡)𝑒𝑖⟨Φ⟩(𝑡) = 1
𝑁 𝑙

𝑁𝑙

∑
𝑘=1

𝑒𝑖Φ𝑘(𝑡)

Per-input synchrony:

𝑅𝑐(𝑡)𝑒𝑖⟨Φ⟩𝑐(𝑡) =
1
|𝐿𝑐|

∑
𝑘∈𝐿(𝑐)

𝑒𝑖Φ𝑘(𝑡)
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