
Gravitational waves (GW), first observed by the Advanced Laser 

Interferometer Gravitational-Wave Observatory (LIGO) in 2015, 

are an important subject of study in astrophysics, paving the way 

for a better understanding of the universe.  

Gravitational waves are rarely observed and do not fit into 

predictable patterns, whereas noisy time series are abundant. As 

a result, machine learning-based anomaly detection techniques 

can significantly support researchers in the analysis of LIGO and 

Virgo telescope waveforms.

This research applies a novel model, the adversarial autoencoder 

(AAE), to gravitational wave detection, and compares the AAEs’ 

results to a traditional autoencoder (AE)s’ results. We hypothesize 

that, because of the adversarial nature of AAEs, adversarial 

autoencoders will be better anomaly detectors than traditional 

autoencoders.

 

Latent Layer 
Classifiers

Hyper Parameters Possible Values

Logistic Regression Max Iterations 100

Extra Trees Number of Estimators 10, 100 or 1000

Random Forest Number of Estimators 10, 100 or 1000

Gradient Boosted Trees Max Depth 5

Minimum Samples per 
Leaf 1

XGBoost Number of Estimators 1000

Support Vector Machine Kernel RBF

C 1, 10 or 100

Gamma 1^-4, 1^-3, 1^-2 or 0.1

K Nearest Neighbors Algorithm KD Tree

Leaf Size
1, 6, 11, 16, 21, 26, 31, 36, 

41 or 46

Number of Neighbors 1, 6, 11, 16, 21, 26 or 31

In our experiments, the both the AE and AAE models moderately 

improved on the original paper’s F1-Scores, with the AE model 

edging out the AAE.

On the most difficult problem, GW3, the AE and AAE improved on 

the original paper, but different latent layer (LL) classifiers had 

vastly different F1-Scores.

Gravitational Wave Detection with Novel Machine Learning Models
Ian Whitehouse & Dr. Roberto Corizzo

American University, Department of Computer Science

Autoencoders are machine learning models that consist of an 

encoding stage and a decoding stage.  During training, the model 

learns how to compress the data into a meaningful 

representation in a lower-dimensional space (latent layer).  

The model’s loss, therefore, is the difference between the 

decoding of the lower-dimensional space and the original input. 

Autoencoders are often used for anomaly detection because, 

when trained on only non-anomalous samples, the autoencoder 

is unable to decompress anomalous samples without incurring 

high reconstruction error.

Adversarial autoencoders (Makhzani et al) are an extension of 

autoencoders that include an additional discriminator. In a 

traditional autoencoder, the latent layer is not continuous, 

however, by including the discriminator and using the 

autoencoder’s compression stage as a generator, the latent layer 

is made continuous and the model can be used to generate 

synthetic data, like in a general adversarial network.

Inclusion of normal distribution in an AAE’s training by 

adding a discriminator to the model

During the experiments, pairs of autoencoders and adversarial 

autoencoders were created by randomly sampling 

hyperparameters from the table below

Each model was trained solely on noise (one-class learning), 

before being fed testing data that included both noise and 

anomalous signals (GW). The model attempted to classify these 

anomalous signals using its latent representation and the 

model's reconstruction accuracy.

We performed experiments using 3 datasets, all of which 

included four gravitational wave discoveries (GW150914, 

LVT151012, GW151226, and GW170104) (Abbott et al).  

Data was collected at a sampling rate of 4096hz and included 

time series with lengths of both 1 second and 3 seconds.  

• GW1: Anomalous timeseries from these events, and simulated 

noise from the PyCBC library (Nitz et al).

• GW2: Anomalous samples blended with synthetic noise.  The 

noise was added with a weight of 0.1, 0.25 and 0.5.

• GW3: Same anomalous samples as GW1, and noise sampled in 

the proximity of the events, which provides a more realistic 

test

To test the models, approximately 180 trials were run, with 

hyperparameters randomly sampled. The distribution of 

hyperparameters were selected to match the previous research 

and are described in our methodology.

The experiments were run using TensorFlow, on a computer with 

a RTX 3090 and 4090.

These results represents an improvement on prior results. 

However, additional research is necessary to further improve the 

accuracy of the models and assess them under challenging 

conditions and experimental settings.

One hypothesis for why AAEs did not perform better as anomaly 

detectors is that the models tested were so advanced that they 

could easily reconstruct the anomalies, leading to them having 

higher reconstruction accuracies, as shown in the results for 

GW3. This is supported by the paper “Do Deep Generative 

Models Know What They Don't Know?” (Nalisnick et al), which 

posits that generative models, like AAE’s, can confidently parse 

inputs that they were not trained on, which means that may not 

be useable as anomaly detectors. In our own models, the AAE 

appears to easily reconstruct the anomalies, as shown in the 

figure to the left

We plan to further analyze these results as we begin to compile 

our findings
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Hyper Parameters Possible Values

Time Sequence Length 1, 3

Input Layer Neurons 4096 * time sequence length

Hidden Layers 1, 2

Hidden Layer Neurons 1/2, 1/4 or 1/8 of the input layer
This term is squared for models with 2 

hidden layers

Latent Layer Neurons 1/4, 1/8, 1/16 or 1/32 of the input layer

Dropout 10%, 25% or 50%

Learning Rate 10^-7, 10^-6 or 10^-5

Batch Size 4, 8 or 16
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To classify the signals using the model’s latent representation, we 

employed simple ML classifiers optimized via grid search, shown 

in the table below 

The classifiers were trained on latent layers of both noise and 

anomalous samples, making them supervised learners. In line 

with our hypothesis, we believed that, since the AE and AAE were 

only trained on noise, it would be trivial to separate out 

anomalous samples.

Latent representations of GW1 signals after compression by 

an AAE, highlighting clusters formed by anomalous data

The model’s reconstruction accuracy is an unsupervised anomaly 

detection method that was the focus of Dr. Corizzo’s earlier work. 

In these experiments, we also tested whether reconstructions of 

the anomalous signals would be less accurate when applying an 

adversarial autoencoder.

GW1: AE and AAE were unable to replicated anomalous 

signals, despite easily replicating noise (Left).

GW3: AAE easily replicates the anomalous signal, despite 

being trained only on noise (Right)
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