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Abstract
With the evolution of social media, cyberspace has become the de-facto medium for users 
to communicate during high-impact events such as natural disasters, terrorist attacks, and 
periods of political unrest. However, during such high-impact events, misinformation can 
spread rapidly on social media, affecting decision-making and creating social unrest. Iden-
tifying the spread of misinformation during high-impact events is a significant data chal-
lenge, given the multi-modal data associated with social media posts. Advances in multi-
modal learning have shown promise for detecting misinformation; however, key limitations 
still make this a significant challenge. These limitations include the explicit and efficient 
modeling of the underlying non-linear associations of multi-modal data geared at misin-
formation detection. This paper presents a novel avenue of work that demonstrates how to 
frame the problem of misinformation detection in social media using multi-modal latent 
variable modeling and presents two novel algorithms capable of modeling the underlying 
associations of multi-modal data. We demonstrate the effectiveness of the proposed algo-
rithms using simulated data and study their performance in the context of misinformation 
detection using a popular multi-modal dataset that consists of tweets published during sev-
eral high-impact events.
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1 Introduction

With the evolution of social media technologies, there has been a fundamental change in 
how information is accessed, shared, and propagated. Propagation of information, particu-
larly misinformation, becomes especially important during high-impact events such as 
pandemics, natural disasters, terrorist attacks, and periods of political transition, unrest, or 
financial instability.

Recent multi-modal learning advances have shown promise for detecting misinforma-
tion (Sharma et  al., 2019); however, this problem remains a significant challenge due to 
several key limitations. One limitation relates to the use of multi-modal data, i.e., informa-
tion collected about the same phenomenon using different modalities. The use of multi-
modal data has not been fully leveraged in intelligent systems, which traditionally utilize a 
single modality, typically text (Moroney et al., 2021) or images (Cao et al., 2020). Machine 
learning algorithms must be able to understand content holistically to become more effec-
tive in detecting misinformation.

Early fusion methods provide effective solutions for multi-modal learning since joint 
representations of input features from different modalities are created before attempt-
ing to classify the content, enabling enhanced detection of posts with malicious content 
(Baltrušaitis et al., 2018). However, in these studies, the joint representations are obtained 
by simply concatenating the individual representations or implicitly modeling the mutual 
relationships across the modalities (Ramachandram & Taylor, 2017). Multi-modal learn-
ing is desirable because of its ability to explicitly learn the mutual relationships among the 
modalities by letting multiple sources of information adaptively interact while generating 
the joint feature representations. This is what we define as true fusion.

With its well-structured formulation, independent vector analysis (IVA) provides an 
ideal starting point for developing methods for true fusion. Through the estimation of joint 
features, IVA can effectively capture unique characteristics of multi-modal data that can 
be used to enhance the performance of a machine learning task. The results presented in 
Boukouvalas et al. (2021) demonstrate this idea and use true fusion to exploit the under-
lying complementary information contained in different molecular featurization methods 
demonstrating significant advantages over currently used methods (Boukouvalas et  al., 
2021; Balakrishnan et al., 2021). In addition, IVA algorithms are computationally attrac-
tive and easily interpretable? (Boukouvalas et al., 2021; Damasceno et al., 2022).

This work presents two novel multi-modal IVA-based algorithms geared at detecting 
misinformation. Our first algorithm, independent vector analysis by multivariate entropy 
maximization with kernels, or IVA-M-EMK, effectively models complex, non-linear rela-
tionships among different modalities. Our second algorithm, independent vector analysis 
with sparse inverse covariance estimation, or IVA-SPICE, imposes sparsity constraints 
through the inverse covariance matrix isolating the most important relationships in the 
underlying multi-modal features. We demonstrate the effectiveness of IVA-M-EMK and 
IVA-SPICE under different scenarios using simulated data and study their performance in 
the context of misinformation detection using a popular multi-modal dataset consisting of 
tweets made during several high-impact events.

It is worth noting that achieving a perfect classification score is not the goal of this 
work. Instead, our goal is to present a novel avenue of work that will demonstrate the great 
potential of latent variable methods for true fusion of multi-modal data in a fast-growing 
and challenging area. In particular, we present how to generate joint features from multi-
modal datasets to improve the learned response of a detection model over the performance 
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of the individual feature vectors treated separately. Last but not least, our algorithms are 
transferable and fully generalizable to other areas of interest where analysis of multi-modal 
data is vital.

The remainder of the paper is organized as follows. Section 2 discusses a multi-modal 
fusion framework based on IVA and presents the mathematical details of IVA-M-EMK 
and IVA-SPICE. In Sect. 3, we demonstrate the effectiveness of the proposed algorithms 
using simulated data and present the parallel implementation of IVA-SPICE. In Sect. 4, we 
justify the importance of explicitly modeling the non-linear relationships across different 
modalities using IVA-M-EMK and IVA-SPICE. Then, we numerically demonstrate under 
which scenarios the proposed algorithms enhance the performance of the detection of mis-
information using a popular multi-modal dataset consisting of tweets posted during several 
high-impact events. Finally, Sect. 5 concludes the paper.

2  Multi‑modal data fusion framework based on independent vector 
analysis

We formulate the problem of joint feature generation for detection of unreliable posts as 
a joint blind source separation (JBSS) problem. In particular, let �[k] ∈ ℝ

d×V is the kth 
observation matrix from kth modality, where d denotes the number of initial high level 
feature vectors in the kth modality and V denotes the total number of samples. The model 
is given by

where �[k] ∈ ℝ
d×N is the kth mixing matrix and �[k] ∈ ℝ

N×V are latent variable estimates, 
i.e., kth set of N source estimates, which in our setting, correspond to the kth set of N fea-
ture estimates. The estimates of the feature span the low dimensional representation space 
and will be used to train a machine learning algorithm for the detection of misinformation. 
The estimates of �[k] contribute to knowledge discovery during a high-impact event since 
they encode information about the connections between the high level feature vectors and 
the low dimensional representation space (Boukouvalas et  al., 2020). It is worth noting 
that when K = 1 , (1) reduces to a simple blind source separation (BSS) problem with one 
modality and the most popular way to achieve BSS is by using ICA (Comon & Jutten, 
2010; Hyvärinen et al., 2004; Adalı et al., 2014).

As shown in Fig. 1, IVA provides a smart connection across multiple datasets by defin-
ing a source component vector (SCV), which enables one to take full statistical information 
across multi-modal datasets, enabling true fusion of multi-modal data. Using the random 
vector notation (as opposed to the one written using observations in 1), we write 
�[k] = �[k]�[k], k = 1,… ,K, where �[k] ∈ ℝ

N×N , k = 1,… ,K are invertible mixing matri-

ces and �[k] =
[
s
[k]

1
,… , s

[k]

N

]⊤
 is the vector of features for the kth dataset. In the IVA model, 

dependence across corresponding components of �[k] is taken into account through the SCV 
which is obtained by vertically concatenating the nth source from each of the K dataset as 
�n =

[
s[1]
n
,… , s[K]

n

]⊤ (Adalı et al., 2014). The goal in IVA is to estimate K demixing matri-
ces to yield source estimates �[k] = �[k]�[k] , such that each SCV is maximally independent 
of all other SCVs. We note that while we consider the noiseless BSS model, the effect of 
noise is taken into account through dimension reduction such that we start with 

(1)�[k] = �[k]�[k], k = 1,… ,K,
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overdetermined problems where d > N and use a dimensionality reduction technique like 
principal component analysis (PCA) to project the data to a lower dimensional space where 
d = N . This simple step is critical for multi-modal data fusion since each modality might 
exhibit different levels of noise, and thus, identifying the optimal joint signal subspace 
would help improve the generalization abilities of the solution.

The IVA optimization parameter is defined as a set of demixing matrices �[1],… ,�[K] , 
which can be collected into a three dimensional array W ∈ ℝ

N×N×K and can be estimated 
through the minimization of the IVA objective function given by

Here H(�n) denotes the (differential)1 entropy of the estimated nth SCV that serves as the 
term for modeling the complex relationships among the different modalities. By definition, 
the term H(�n) can be written as 

∑K

k=1
H(yk

n
) − I(�n) , where I(�n) denotes the mutual infor-

mation within the nth SCV. Therefore, it can be observed that minimization with respect to 
each demixing matrix �[k] of (2) automatically increases the mutual information within the 
components of an SCV, revealing how IVA exploits statistical dependence across different 
modalities.

Using the IVA objective function (2), the derivative with respect to each of the demix-
ing matrices is given by

where �[k] = −

[
𝜕 log ps1

(y1)

𝜕y
[k]

1

,… ,
𝜕 log psN

(yN )

𝜕y
[k]

N

]⊤
.

Thus, each of the K demixing matrices is updated using gradient descent

(2)JIVA(W) =

N∑

n=1

H(�n) −

K∑

k=1

log
|||det

(
�[k]

)||| + C.

(3)
𝜕JIVA(W)

𝜕�[k]
= E

{
�[k](�[k])⊤

}
− (�[k])−⊤,

(4)(�[k])new ← (�[k])old − �
�JIVA(W)

��[k]
,

Fig. 1  IVA model for multi-modal data fusion and the statistical property taken into account: statistical 
dependence across modalities within a source component vector �

n

1 We consider continuous-valued random variables and in the sequel, refer to differential entropy as simply 
entropy for simplicity.
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where � is the step size.
It can be observed that performing the optimization procedure on the space of all invert-

ible matrices may result in poor convergence due to inversion of the �[k] matrix at each 
iteration. A potential solution for this issue is to post multiply the gradient of the objective 
function by (�[k])⊤(�[k]) . Although this “natural gradient” approach has shown signifi-
cant results in terms of its convergence properties (Amari & Douglas, 1998; Cichocki & 
Yang, 1996), there are still limitations associated with optimization using matrix param-
eters. For instance, the term E

{
�[k](�[k])⊤

}
 in (3) may be especially complicated when the 

class of estimated probability density functions (PDFs) for the estimated features is com-
plicated. This motivates the division of the minimization of (2) into a series of sub-prob-
lems such that we minimize the objective function with respect to each of the row vectors 
�

[k]

1
,… ,�

[k]

N
 individually. This simplifies the density matching problem as the estimation 

of a given source will not affect the estimation of the others. In addition, optimization of 
cost functions with respect to each row vector of the demixing matrix enables integration 
of flexible multivariate PDF estimation techniques (see Sect. 2.1), simplifies the incorpora-
tion of constraints in the IVA framework (see Sect. 2.2), and enables the implementation of 
parallel IVA algorithms (see Sect. 3.1). Through this work, we will provide solutions to all 
of these aspects.

We mathematically formulate this by following Li and Adalı (2010), Anderson et  al. 
(2012), Boukouvalas (2018). In the following discussion, we consider the cost func-
tion (2) and update rule (4) without the superscript [k] to keep the notation simple. Let 
�n = [�1,… ,�n−1,�n+1,… ,�N]

⊤ ∈ ℝ
(N−1)×N denote the matrix that contains all rows of 

� except the nth one. Since the determinant of a matrix is invariant under row permutation 
up to a sign ambiguity, the square of the det(�) term in (2) is written as

where the term �n = � −�⊤
n

(
�n�

⊤
n

)−1
�n is the orthogonal projection onto the null 

space of �n . By definition, the matrix �n is rank one, and thus, �n = �n�
⊤
n
 , where �n is 

perpendicular to all row vectors of �n . Thus,

Therefore, by reintroducing the superscript [k], the cost function (2) can be written as

where the terms H(�[k]) and log | det((�[k]
n
)(�[k]

n
)⊤)| are independent of �[k]

n
 . The gradient 

of (7) w.r.t. �[k]
n

 is given by

(5)
det(�)2 = det(��⊤) = det

([
�n

�⊤
n

] [
�n�

⊤
n

])
= det

([
�n�

⊤
n
�n�n

�⊤
n
�⊤

n
�⊤

n
�n

])

= det(�n�
⊤
n
)�⊤

n
(� −�⊤

n
(�n�

⊤
n
)−1�n)�n,

(6)
| det(�)| =

√
det(�n�

⊤
n
)2�⊤

n
�n�

⊤
n
�n =

√
det(�n�

⊤
n
)2(�⊤

n
�n)

2

= | det(�n�
⊤
n
)||(�⊤

n
�n)|.

(7)JIVA(�
[k]
n
) =

N∑

n=1

H(�n) − log |(�⊤
n
�[k]

n
)| − log | det((�[k]

n
)(�[k]

n
)⊤)| − H(�[k]),

(8)
𝜕JIVA

𝜕�
[k]
n

= E
{
𝜙[k]
n

(
�n
)
�[k]

}
−

�[k]
n

(
�
[k]
n

)⊤

�
[k]
n

.
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Thus, the estimate of each �[k] can be determined w.r.t. each row vector �[k]
n

 , n = 1,… ,N 
independently, by using the gradient update rule

A pseudocode description of an IVA algorithm is given in Algorithm 1 below. The main 
part of this algorithm is the loop described in lines 3-12, where one can observe that opti-
mal convergence, and thus, true fusion of multi-modal data depends on the development of 
effective models for the multivariate PDFs of each estimated SCV and their estimation as 
well as on efficient utilization of prior information through meaningful constraints. In addi-
tion, one can observe that since the bulk of the computational complexity of IVA occurs 
in lines 3-12 in Algorithm 1, distributing separate iterations of the main loop to separate 
computational resources is desirable to reduce the total execution time.

2.1  Effective density models for capturing multi‑modal associations—IVA‑M‑EMK

The key factor in the explicit modeling of the non-linear relationships across different modali-
ties is the estimation of the true underlying PDF of each estimated SCV. It is clear that mini-
mizing (2) is not a straightforward task since there is no access to the true underlying PDF of 
each estimated SCV. To mathematically demonstrate this, if p̂(�n) denotes the PDF of the nth 
estimated SCV then its entropy can be expressed as

where f (p(�n), p̂(�n)) denotes the Kullback-Leibler (relative entropy) distance between the 
density of the nth estimated SCV and the true density of �n . From (10), we can achieve per-
fect source estimation as long as the assumed model PDF matches the true latent multivari-
ate density of the nth SCV, i.e., f (p(�n), p̂(�n)) = 0 . As demonstrated in Boukouvalas et al. 

(9)(�[k]
n
)new ← (�[k]

n
)old − �

�JIVA(�
[k]
n
)

��
[k]
n

.

(10)H(�n) = −f (p(�n), p̂(�n)) − E{log p̂(�n)},



2189Machine Learning (2024) 113:2183–2205 

1 3

(2018); Damasceno et  al. (2021, 2022), PDF estimators based on the maximum entropy 
principle can successfully match multivariate latent sources from a wide range of distribu-
tions. The maximum entropy distribution for each �n is given by

where the Lagrange multipliers �m are chosen such that the M number of moment con-
straints are satisfied.

Thus, the development of flexible and efficient models for entropy, their estimation 
using the maximum entropy principle, and their effective integration into (2), requires 
that we address the following three key issues:

1. Lagrangian multipliers evaluation and choice of constraints:

We evaluate the Lagrangian multipliers by the Newton iteration scheme using local 
and global constraints. The estimation of the Lagrange multipliers highly depends on 
the proper selection of the constraints in order to provide information about the underly-
ing statistical properties of the data. Failing on this will result in high complexity and 
poor data characterization.

Following a similar strategy as in Fu et al. (2015), Damasceno et al. (2021, 2022), we 
jointly use global and local constraints to provide flexible multivariate density estima-
tion while keeping the complexity low. Therefore, we use �, �n, �2n, �n∕(� + �2

n
) as the 

global constraints, since they provide information on the PDF’s overall statistics, such 
as the mean, variance, and higher order statistics (HOS). For the local constraint we use 
the Gaussian kernel given by,

where �n denotes the mean vector, �n denotes the covariance matrix, and | ⋅ | denotes the 
determinant. The Gaussian kernel provides localized information about the PDF.

It is important to mention that when we add the Gaussian kernel to the multi-dimen-
sional framework, integration becomes challenging because the Gaussian kernel has an 
infinite support.

2. Multi-dimensional integration during the estimation of the Lagrange multipliers:

Multi-dimensional integration is one of the main challenges in our estimation problem. 
We use an efficient multi-dimensional integration technique based on Quasi-Monte Carlo 
methods (QMC) to overcome this problem. QMC have shown to be efficient in terms of 
their rate of convergence and achieve a convergence rate of order O((logV)K∕V) (Dick 
et al., 2013). Following the steps in Damasceno et al. (2021), we generate a sequence of 
quasi-random points (Niederreiter, 1992). Using this sequence, we approximate the multi-
dimensional integrals in a Monte Carlo method manner (Dick et al., 2013).

3. Efficient multivariate density estimation technique based on IVA by multivariate entropy 
maximization with kernels (IVA-M-EMK):

(11)p̂(�n) = exp

{
−1 +

M∑

m=0

𝜆mrm
(
�n
)
}

,

(12)q(�n) =
1

√
��n�(2𝜋)K

exp (−
1

2
(�n − �n)

⊤�−1
n
(�n − �n)),
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Once the Lagrange multipliers have been estimated, and we have a full characteriza-
tion of the underlying PDF and, therefore, a full characterization of the entropy for each 
estimated SCV, IVA-M-EMK provides estimates of the demixing matrices by minimizing 
(2). The gradient of (2) with respect to each row vector �[k]

n
 of �[k] for the IVA-M-EMK is 

given by

Following the idea in Boukouvalas et al. (2018), we perform the optimization routine in a 
Riemannian manifold rather than a classical Euclidean space since this provides important 
convergence advantages. We define the domain of our cost function to be the unit sphere in 
ℝ

N and project (13) onto the tangent hyperplane of the unit sphere at the point �[k]
n

 . Since 
the IVA-M-EMK cost function depends on the number of moment constraints chosen for 
each SCV, non-monotonic behavior is expected between two consecutive iterations.

2.2  Sparsity constraints to capture conditional independence between estimated 
joint features—IVA‑SPICE

IVA relies on the assumption of statistical independence of the latent features. Although 
this might be a natural assumption in many problems, it may be too strong for our applica-
tion. Incorporating prior reliable and meaningful information about the underlying multi-
modal features can help relax the statistical independence assumption, resulting in a better 
model match. This will result in better estimation of the SCVs, and thus, its corresponding 
estimated precision matrices will better reveal associations between extracted low dimen-
sional features across the modalities. A logical approach to isolate the most important 
relationships of the underlying joint features is to impose a Gaussian model on each SCV 
parameterized by the inverse covariance matrix to induce sparsity.

Thus, under the assumption that each SCV follows a multivariate Gaussian distribution 
we have that

where �k is the unit vector. Therefore, the gradient of (2) with respect to each row vector 
�[k]

n
 of �[k] is given by

Taking advantage of the natural properties of the precision matrix provides a known struc-
ture which increases potential use cases for IVA. Since, under the Gaussian assumption, we 
can leverage the equivalence of partial correlation and conditional independence among 
the joint features, sparsity of the precision matrix is an informative property. Leveraging 
sparsity in the precision matrix reduces the effects of confounding joint features, thereby 
capturing conditional dependencies in the underlying multi-modal data structure. Such 
conditional dependencies appear as zero values in the inverse covariance (Dempster, 1972; 
Lauritzen, 1996). Moreover, exploitation of the sparse structure of each SCV reduces the 

(13)
𝜕JIVA

𝜕�
[k]
n

= −

M∑

i=0

𝜆i

𝜕ri
(
�n
)

𝜕�
[k]
n

E
{
�[k]

}
−

�[k]
n

(
�
[k]
n

)⊤

�
[k]
n .

(14)𝜙[k]
n
(�n) = �⊤

n
𝛴−1

n
�k,

(15)
𝜕JIVA

𝜕�
[k]
n

= E
{
�[k]�⊤

n

}
𝛴−1

n
�k −

�[k]
n

(
�
[k]
n

)⊤

�
[k]
n

.
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number of parameters to be estimated when we have assumed that the SCVs follow a multi-
variate Gaussian distribution. However, each precision matrix �−1

n
 is most often unknown; 

therefore, its efficient estimation plays a crucial role in the overall performance of IVA.
Graphical Lasso for the estimation of each �−1

n
 . To simplify the notation we drop 

the under-script n from �−1 . Let us consider the Gaussian log-likelihood function 
�
(
�−1

)
= tr

(
S�−1

)
− logdet�−1 , where S is the empirical covariance. Lasso penalization 

of Tibshirani (1996) based on the � 1 norm – the sum of absolute values of entries in �−1 – is 
a popular approach to estimate the precision matrix. The graphical lasso algorithm presented 
in Friedman et al. (2007) yields a sparse inverse covariance, effectively isolating the strongest 
relationships between variables in the data by imposing a specified degree of sparsity.

Mathematically, graphical lasso solves the convex optimization problem

where the scalar parameter � controls the magnitude of the penalty on the � 1 norm, ‖�−1‖1 . 
The choice of � decides a trade off between the maximum likelihood (ML) and sparsity; 
smaller values fit the data better, but larger values encourage sparser solutions. A popular 
choice for � is the cross-validated choice, which typically improves model performance.

Following the work in Banerjee et al. (2008), the optimization problem in (16) is solved 
by estimating � as M through a blockwise updating scheme. This involves optimizing over 
each row and corresponding column of M . M and S are partitioned as

In Friedman et al. (2007), blockwise coordinate descent is used for the estimation of �−1 
in graphical lasso, letting M�−1 = I . They show the subgradient for the maximization of 
(16) is

where �  is determined by the signs of �:

and is partitioned the same way as (17). As per the coordinate-wise pattern, graphical lasso 
solves for one row/column at a time while holding the rest fixed. The Kth column of (18) 
gives

They show that m12 can be accessed as:

and plugging this into (20) gives the gradient equation,

(16)�̂�
−1

= argmax𝜮−1 tr
�
S𝜮−1

�
− logdet𝜮−1 − �‖𝜮−1‖1,

(17)M =

(
M11 m12

m�

12
m22

)
, S =

(
S11 s12
s�
12

s22

)
.

(18)M − S − �� = 0,

(19)�jk = sign(�−1
jk
) if �−1

jk
≠ 0, �jk ∈ [−1, 1] if �−1

jk
= 0.

(20)−m12 + s12 + ��12 = 0.

(21)m12 = −M11�
−1
12
∕�−1

22
,

(22)M11

�−1
12

�−1
22

+ s12 + ��12 = 0,
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which graphical lasso solves for with � = �−1
12
∕�−1

22
 . Finally, they define the lasso problem 

to be solved coordinate-wise as:

It is clear that m̂12 is found from � in (21). ̂𝛴−1
22 can be found by:

And now, it is easy to estimate �̂�−1
12

 from 𝛽  and �̂�−1
22

.

(23)min
�

�
1

2
��M11� + ��s12 + �‖�‖1

�
,

(24)
1

�̂�−1
22

= m22 − 𝛽�m̂12.

Fig. 2  Performance comparison in terms of Joint ISI and average CPU time for different number of sample 
sizes. The first and second case represented in the first and second columns, respectively. For the first case, 
we have K = 3 and generate one unimodal MGGD SCV where the shape parameter and the correlation 
within the SCV for each dataset are chosen to be � = 3 and � = 0.6 , and a mixture of two MGGD sources 
where � ∈ (0.6, 0.8) and � ∈ (5, 10) respectively. For the second case, we have K = 2 and generate three 
SCVs where each SCV is a mixture of MGGD sources where �,� are chosen from the range (0.5, 1) and 
(0.5, 10) respectively. Average CPU time is measured in seconds
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Given that graphical lasso estimates �̂�
−1 regardless of the relationship between K and V, 

it avoids the constraints faced by empirical estimation of �̂�
n

−1
 . Therefore, graphical lasso is 

an ideal solution for the development of a new algorithm: IVA with sparse inverse covari-
ance estimation, or IVA-SPICE. After each precision matrix has been estimated and we 
have a full characterization of the underlying multivariate Gaussian parameterized by a 
sparse precision matrix, IVA-SPICE provides estimates through an optimization strategy 
similar to the one described in the IVA-M-EMK case.

3  Results based on simulated data

For the first set of our experiments, we show the effectiveness of the IVA-M-EMK and 
IVA-SPICE algorithms2 by comparing their performance with six widely used IVA algo-
rithms in terms of CPU time and terms of the joint inter-symbol-interference (ISI) as 
defined in Anderson et al. (2012). Joint ISI is a global metric for evaluating the separation 
performance when the ground truth 

(
each mixing matrix �[k]

)
 is available. Here, a zero ISI 

indicates perfect separation, while a Joint ISI equal to one indicates the worst separation. 
For the following experiments, we consider two cases when generating the data for the 
SCVs. For the first case, we have K = 3 and generate one unimodal multivariate gener-
alized Gaussian distribution (MGGD) SCV where the shape parameter and the correla-
tion within the SCV for each dataset are chosen to be � = 3 and � = 0.6 , and a mixture of 
two MGGD sources where � ∈ (0.6, 0.8) and � ∈ (5, 10) respectively. For the second case, 
we have K = 2 and generate three SCVs where each SCV is a mixture of MGGD sources 
where �,� are chosen from the range (0.5, 1) and (0.5, 10) respectively. Results are aver-
ages of 30 runs.

From Fig.  2, we see that IVA-generalized Gaussian distribution (IVA-GGD) and IVA-
adaptive generalized Gaussian distribution (IVA-A-GGD) provide a desirable performance 
for the first case in terms of Joint ISI as a function of sample size, revealing the flexibility 
of their underlying density models. Conversely, the algorithms based on IVA-Laplacian 
(IVA-L) (Kim et al., 2006) and IVA-Gaussian (IVA-G) (Anderson et al., 2012) do not pro-
vide a desirable performance due to assuming Laplacian and Gaussian distribution for the 
underlying sources. Overall, IVA-M-EMK performs the best among the eight algorithms 
due to its ability to successfully match multivariate latent sources from a wide range of dis-
tributions. IVA-SPICE does not provide high accuracy due to the model mismatch; how-
ever, it does a better job than IVA-G. In addition to assessing the IVA algorithms based on 
the mean Joint-ISI, we have examined the standard deviation of the Joint ISIs across vari-
ous runs. An intriguing observation emerged: for V = 10, 000 , IVA-M-EMK demonstrated 
the most favorable mean Joint ISI, and its stability across multiple runs was attributed to 
the model match, which further led to the lowest standard deviation.

In terms of CPU time, among the algorithms that use a simple underlying density 
model, IVA-G provides the best performance for both cases. This is due to the assumption 
of Gaussian distribution for the underlying sources, simplifying the gradient of the IVA 
objective function, thus improving the quality of convergence. On the other hand, as we 
expect, IVA-M-EMK, IVA-A-GGD (Boukouvalas et al., 2015), and IVA-SPICE are more 
computationally expensive; however, for the IVA-M-EMK case, we see that as the number 
of samples increases, the increase in average CPU time is negligible.

2 The code for IVA-M-EMK and IVA-SPICE are available at https:// zoisb oukou valas. github. io/ Code. html.

https://zoisboukouvalas.github.io/Code.html
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For the second set of experiments, we evaluate the performance of IVA-SPICE with 
simulated sparse input data. For all experiments, we define the nth SCV as a zero mean, 
K dimensional, multivariate Gaussian random vector parameterized by a sparse inverse 
covariance matrix �−1

n
 , where sparsity is measured by the density of nonzero values. We 

experiment with varying density d, which represents the sparsity of the generated data, 
whe, as well as the number of components N, datasets K, and samples V, with Joint ISI, 
averaged for ten trials.

Starting from the first row in Fig. 3, for the plots in the first and second column, we 
evaluate the source separation performance varying the number of samples from 100 to 
10, 000 with N = 10 , K = 4 , d = 1 and N = 10 , K = 32 , d = 1 , respectively. For this sce-
nario, holding the density of nonzero values at 1, we can observe that in the sparser case, 
IVA-SPICE achieves the best separation performance. Moreover, from the right plot in the 
first line with N = 10 , d = 1 , and V = 10, 000 , we can see that increasing the number of 
datasets is negligible. Finally, for the plots in the second row, we fix K = 4 and once again 
hold N = 10 for V = 1000 in the first columns and V = 10, 000 in the second. We can see 
that IVA-SPICE outperforms all the other IVA algorithms when there is underlying spar-
sity in the SCVs. Furthermore, an important aspect is that IVA-SPICE greatly improves 
its source separation performance with a large rate of decrease when more samples are 
available. Increasing the sample size in our experiments represents the optimal solution 
since IVA is formulated under a maximum likelihood framework (Damasceno et al., 2021). 
Last, we have investigated the standard deviations across multiple runs while varying two 

Fig. 3  Performance comparison in terms of Joint ISI for different number of sample size, different number 
of datasets (K), as well as different values of density of nonzero values on the true precision matrices. Aver-
age CPU time is measured in seconds
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parameters: K (Fig.  3, row 1, column 3) and the density (Fig.  3, row 2, column 1). As 
we increase K, algorithms with more flexible underlying models, such as IVA-M-EMK 
and IVA-SPICE, exhibit higher standard deviations across multiple runs. However, IVA-
M-EMK fails to deliver a desirable mean Joint ISI due to model mismatch and underlying 
sparsity issues. On the other hand, when increasing the density, IVA-SPICE, as expected, 
provides the lowest mean Joint ISI. Yet, its model flexibility (Graphical Lasso) causes 
higher standard deviation compared to the other IVA algorithms. In particular, the standard 
deviation of IVA-SPICE when d = 1 is 0.193 and for the same case the standard deviation 
of IVA-SPICE is 0.125.

3.1  Parallel implementation of IVA

A highly-regarded characteristic of machine learning tools is the ability to support the 
analysis of large-scale data, which is frequently encountered in real-world applications. 
Since the bulk of the computational complexity of an IVA algorithm mostly occurs during 
the estimation of the SCV PDFs, distributing separate iterations of the main loop to sepa-
rate computation resources is desirable to reduce the total execution time. The decoupling 
trick, as presented in Sect. 2, transforms the matrix optimization task for (2) into a series 
of vector optimization problems and, at the same time, it provides independence between 
the computation of each of the IVA cost function gradient directions. Our optimized IVA 
implementation splits the input data across features, such that each task of estimating the 
PDF of each SCV is assigned to a separate CPU processor. In the final computation, the 
partial contribution from each estimated SCV is aggregated to obtain the final result. Our 
implementation leverages the Python multiprocessing API,3 which allows us to control and 
assign workloads to multiple processors on a single computational node. As we observe 
from Fig. 2, IVA-SPICE is computationally expensive and since this algorithm is imple-
mented in Python, we choose to demonstrate the computational speedup of the parallel 
IVA-SPICE implementation over its sequential counterpart.

Fig. 4  Scalability experiments for the parallel SPICE-IVA implementation in terms of CPU time (left) and 
SpeedUp factor (right). SpeedUp is computed as the ratio between the time execution with the single-core 
implementation, and the corresponding execution time with multiple cores

3 https:// docs. python. org/3/ libra ry/ multi proce ssing. html.

https://docs.python.org/3/library/multiprocessing.html
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Experiments in Fig. 4 show the CPU time (left) and the SpeedUp factor (right) obtained 
with an increasing number of sources and cores, respectively. Experiments were performed 
on a workstation equipped with an Intel Xeon Gold CPU with 52 cores (104 threads) and 
256GB RAM. The results highlight that a significant speedup can be obtained with the par-
allel implementation of IVA-SPICE as more sources and CPU cores are available. Focus-
ing on experiments with N = 50 , it can be observed that the execution with 64 cores brings 
down the execution time from 669.18 to 37.98  s, which results in a speedup of 17.62x. 
Even though this result is far from the theoretical upper bound (64x), the reduction margin 
achieved in the execution time is remarkable. Generally, the results show that increasing 
the number of cores always provides an improvement in terms of speedup and a consequent 
reduction in the execution time. It is worth noting that, in our experiments, no differences 
in the ISI results were observed for the single-core vs. multi-core implementations. As a 
result, the reduction in the execution time achieved with the parallel implementation does 
not come at the cost of reduced accuracy for the IVA-SPICE converging solution. Future 
work includes further optimization of the method to provide linear scalability on cluster 
computing environments, exploiting distributed CPU and GPU-based programming frame-
works, as well as the parallel implementations of most IVA algorithms and, in particular, 
IVA-M-EMK.

4  Application to misinformation detection

4.1  Dataset

We utilized the final processed training and test datasets from our previous study (Dama-
sceno et al., 2022). These datasets were created using the MediaEval2016 Image Verifica-
tion Corpus4 (Boididou et al., 2018). The datasets include: 

1. Separately labeled training and test tweet text and multimedia datasets from the 2016 
vintage.

2. The training dataset comprises tweets revolving around a set of events different from 
those in the test dataset.

3. Each tweet is labeled as “fake” or “real," where “fake" refers to multimedia content that 
does not faithfully represent the event it refers to.

4. “Fake" content includes posts with past event media misrepresented as currently unfold-
ing, manipulated context, or false claims about the depicted event.

The working datasets include records with a single corresponding image. The text data 
consists of "clean" text without emoji characters, stop words, URLs, Twitter handles, time 
stamps, select punctuation, and words less than two characters. The text data was normal-
ized by lowercasing each word, reducing multi-spaces to one space, and lemmatizing the 
text. The dataset includes only tweets identified as using English or a similar language 
using the Langid Python package and the International Organization for Standardiza-
tion (ISO) code for languages. The text data does not include tweets that were denoted as 
being retweeted. Records that resulted in null values during prior feature extraction are not 

4 https:// github. com/ MKLab- ITI/ image- verifi cati on- corpus.

https://github.com/MKLab-ITI/image-verification-corpus
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present. The image data was previously pre-processed by resizing the images to 224 × 224 
pixels and normalizing them.

The training dataset consists of:

• 9140 tweet records associated with 352 different images.
• Representing 15 unique events.
• 5127 tweets labeled as fake.
• 4013 tweets labeled as real.
• Five events include both real and fake tweets.
• Ten events include only fake tweets.

The test dataset consists of:

• 796 tweet records associated with 92 different images.
• Representing 23 unique events.
• 467 tweets labeled as fake.
• 329 tweets labeled as real.
• Seven events have both real and fake tweets.
• One event includes only real tweets.
• Fifteen events include only fake tweets.

We also include features extracted during the previous study in the starting datasets. As 
a text feature, we include a 300-dimensional Word2Vec (Mikolov et  al., 2013) embed-
ding vector for each tweet record where each tweet is represented by the average word 
embedding vectors of the words that make up the tweet. This feature was created using a 
Word2Vec model trained on the Google News corpus.5 As a high-level image feature, we 
include a 4,096-dimensional fully connected layer from a pre-trained VGG-16 model for 
each image associated with an individual tweet record, as these yielded the best classifica-
tion results during model evaluations in the previous study. It is worth mentioning that we 
evaluated features generated using Bidirectional Encoder Representations from Transform-
ers, known as BERT (Devlin et al., 2018). However, the classification accuracy for this spe-
cific dataset was not as high as the accuracy achieved using Word2Vec-based embedding 
vectors. As an illustration, the fusion of BERT-based embedding vectors with VGG-based 
image features yields an F1-score of 70.68%. On the other hand, when Word2Vec is com-
bined with VGG, the F1-score increases to 77.45% as shown in Fig. 1b. It is important to 
mention that BERT comes in various versions, and exploring all these variations in terms 
of the F1-score would be beyond the scope of our current research work. However, it could 
be an interesting direction for future research.

4.2  Additional high level feature extraction

To assess the impact of additional features and modalities on the classification accuracy 
and performance of the algorithms, we create two new features to include in the analy-
sis. The first additional feature we create we call "Image2text". To make this feature, we 
use an Image Captioning PyTorch model6 pre-trained with ResNet101 features to generate 

5 https:// code. google. com/ archi ve/p/ word2 vec/
6 https:// github. com/ ruoti anluo/ Image Capti oning. pytor ch.

https://code.google.com/archive/p/word2vec/
https://github.com/ruotianluo/ImageCaptioning.pytorch
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captions for each image in our datasets. We then use the same Word2Vec model we pre-
viously used to create a 300-dimensional Word2Vec embedding using the average word 
embedding vectors for each word in each generated caption. This provides an additional 
text feature that we use as a separate modality for our evaluations. The second feature we 
create and utilize as another modality for our analysis is a 200-dimension vector repre-
senting the top 200 topics assigned to a tweet using topic modeling. To conduct the topic 
modeling, first we utilize the term frequency-inverse document frequency (TF-IDF) vector-
izer from the scikit-learn Python package to generate a TF-IDF matrix for the text from 
the tweets, using a vocabulary that consists of words that are in less than 95 percent and 
in more than one percent of the tweets in the datasets. We then apply non-negative matrix 
factorization (NMF) to assign 200 topics to each tweet. We use 200 topics to ensure that 
the feature’s dimensions are compatible with our other matrices to conduct our analysis.

4.3  Classification procedure

The classification process consists of four stages. As mentioned in Sect. 4.1, our dataset is 
separated into training and testing datasets, where each tweet is represented by text as well 
as visual content. With this in mind, in the first stage we form our set of tweets in the fol-
lowing way. We denote the training observation matrices for each modality with 
�

[k]

train
∈ ℝ

dk×Vtrain where dk denotes the number of initial high-level feature vectors in each 
modality and Vtrain denotes the number of training tweets. Similarly, �[k]

test ∈ ℝ
dk×Vtest 

denotes the corresponding testing observation matrices. In the second stage, the mean from 
each dataset is removed so they are centered and PCA is applied to each �[k]

train
 , for 

k = 1, 2,… ,K . For the PCA step, we use an order N, which, in our setting, denotes the 
number of features from each modality. Then, for each k = 1, 2,… ,K , we obtain 
�̂

[k]

train
∈ ℝ

N×Vtest and vertically concatenate each �̂[k]

train
 to form a three dimensional array 

�̂train ∈ ℝ
N×Vtrain×k . In the third stage, we perform IVA on �̂train , and since we have K 

modalities, IVA provides K demixing matrices �[k] ∈ ℝ
N×N , for k = 1, 2,… ,K . Then, 

using the estimated demixing matrices we generate �
[k]

train
= �[k]

(
�̂

[k]

train

)⊤

 , for 
k = 1, 2,… ,K . The training dataset �train is formed by either concatenating, averaging, or 
max pooling the estimated SCVs which can be obtained by concatenating the estimated 
sources from �[k]

train
 , for k = 1, 2,… ,K . Note that �train contains all the extracted features 

from the multi-modal data and it will be used for training the classification model. The test-
ing dataset is generated by removing the training mean from each multi-modal testing data-
set and using the generated PCA transformations from the training phase. The demixing 
matrices from the training phase are used to transform the testing datasets as follows, 

�
[k]
test = �[k]

(
�̂

[k]
test

)⊤

 , for k = 1, 2,… ,K , where �[k]
test ∈ ℝ

N×Vtest . Finally, the testing dataset 
�test is formed by either concatenating, averaging, or max pooling the estimated SCVs 
which can be obtained by concatenating the estimated sources from �

[k]
test , for 

k = 1, 2,… ,K . In the fourth stage, we train the classification model using 
(
�train

)⊤ . As 
mentioned in the introduction, the specific form of the classification model is unimportant. 
However, to demonstrate a concrete example, we use support vector machines (SVMs), 
which have shown reliable performance in a variety of applications, especially with smaller 
size datasets (Cortes & Vapnik, 1995; Moroney et al., 2021). Once the classification model 
has been trained, we evaluate its performance using the unseen dataset, 

(
�test

)⊤ . For all 
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experiments, hyper-parameter optimization and model training and testing is done using a 
grid search cross-validation with five folds scheme. The entire process was repeated five 
times (with shuffling before each iteration) to generate well converged statistics.

4.4  Classification performance using textual and visual high level features

For all of the experiments, we measure classification performance by employing the 
F1-score and reporting its macro averaged version. Moreover, we report the total CPU time 
of the training and testing phases and measure it in seconds. Before we introduce multiple 
modalities to show the power of IVA, we demonstrate the importance of combining multi-
modal datasets to improve the learned response of the classification model over the classi-
fication performance of the individual feature vectors treated separately. Thus, we compare 
the classification performance of three different classification models; one trained using 
only the high-level textual features, one trained using the high-level visual features, and 
one trained using the high-level textual features and the high-level visual features concat-
enated together.

From Table 1a, we see that if we train a classifier with just the high-level textual fea-
tures, we obtain a classification performance of 40.04% , while if we train just using the 
high-level image features, we obtain an F1-score of 65.78% . If we concatenate the high-
level text and image features, we obtain a classification performance of 77.59% . Note that 
the classification benchmark for the given F1-scores is 50% . This benchmark serves as a 
reference point to gauge the classification performance, and any F1-score above 50% indi-
cates better than random classification. This result demonstrates that training a classifier 
using both modalities yields better classification performance. However, such an approach 
comes with significant challenges. As we can observe from Table  1a, concatenating the 
two modalities results in feature vectors of dimension 4396, thus affecting the efficiency of 
the machine learning algorithm. In addition, without exploiting the complementary infor-
mation among multiple modalities, discovering the features of greatest importance and 
how they interact with each other becomes impossible.

Table 1  Classification 
performance in terms of F1-score 
for different classification 
scenarios

Table 1a utilizes the concatenation method, involving the vertical con-
catenation of high-level features, such as text and images. In contrast, 
Table 1b employs the concatenation of the estimated SCVs from IVA, 
also arranged vertically. Total CPU execution time is measured in sec-
onds
Bold values denote the highest level of performance

Methods F1 CPU time (s)

(a) Regular approach
 Concatenate ��.��% �.� × ���

 Text 40.04% 2.7 × 103

 Image 65.78% 1.03 × 104

(b) IVA-M-EMK
 Concatenate 73.77% 2.4 × 103

 Maximum 73.11% 1.5 × 103

 Average ��.��% �.� × ���
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Due to its superior flexibility, IVA-M-EMK can address both challenges since it 
enables simultaneous study of multiple modalities by explicitly exploiting alignments 
of data fragments where there is a common underlying feature space. This can been 
seen from Table 1b, where IVA-M-EMK with N = 100 and averaging all SCVs leads to 
high classification accuracy and superior improvement in terms of the CPU execution 
time. Moreover, Table 1b shows two additional methods to combine the estimated SCVs 
after IVA-M-EMK has been applied with N = 100 . Due to the fact, that the “Average" 
method yields the highest F1-score and lowest CPU execution time, for the rest of our 
experiments we adopt the “Average" method in order to combine the estimated SCVs. 
Numerical experiments showed that is true for all IVA algorithms.

For the following set of experiments, we compare IVA-M-EMK and IVA-SPICE 
with several IVA algorithms and canonical correlation analysis (CCA) in terms of the 
F1-score as a function of the number of features and training samples and when K = 2 . 
It is worth mentioning that CCA does not explicitly impose an underlying density model 
for the joint features, but it implicitly seeks for a pair of vectors with the maximum 
correlation coefficient. On the other hand, different IVA algorithms explicitly model 
the underlying associations by assuming different probability densities for the underly-
ing SCVs. In particular, IVA-L (Kim et al., 2006) is an algorithm that takes HOS into 
account and assumes a Laplacian distribution for the underlying SCVs. IVA-G (Ander-
son et  al., 2012) exploits linear dependencies but does not take HOS into account. 
Finally, IVA-A-GGD (Boukouvalas et al., 2015) is a more general IVA implementation 
where both second and HOS are taken into account. This algorithm assumes an MGGD 
for the underlying SCVs, and through the estimation of its parameters, multivariate 
Gaussian and Laplacian distributions become special cases.

From the right plot in Fig.  5, we see that the F1-score for most IVA algorithms is 
invariant to the increase in features when all training samples are used. In addition, we 
see that as the number of features increases, IVA-M-EMK, IVA-A-GGD, IVA-SPICE, 
and IVA-L provide a desirable performance, followed by IVA-G. Conversely, as the 

Fig. 5  Performance comparison in terms of F1-score and average CPU time for different number of features 
when all training samples are used
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number of features increases, CCA provides the worst performance due to its model 
simplicity.

From the left plot in Fig. 5, we see that for N = 100 all IVA algorithms except IVA-G 
and CCA provide a desirable performance in terms of F1-score as the number of train-
ing samples increases. This reveals the flexibility of their underlying density models. 
A high F1-score as a function of training tweets makes IVA-M-EMK an ideal fusion 
approach for misinformation detection during high-impact events when textual and vis-
ual modalities are used. In addition, we see that IVA-SPICE provides good performance 
when less than 5,000 training samples are available, showing how important it becomes 
to reduce the effects of confounding joint features in cases with a poor training sample. 
Finally, we note that the classification results of our approach are on par with results 
obtained in similar studies such as Boididou et al. (2018).

Overall, IVA-M-EMK performs the best among the six algorithms. This can be 
attributed to its capability to explicitly model the underlying associations in the joint 
features by assuming different probability densities for the underlying SCV. The estima-
tion of these probability densities is carried out using the maximum entropy principle, 
which has proven to be a highly effective method for multivariate probability density 
estimation (Damasceno et al., 2021).

4.5  Experimenting with more modalities

The proposed data fusion approach allows the quantification of each modality’s additive 
value and the determination of the ideal combination of modalities that provides the high-
est prediction score. To demonstrate this, we evaluate the performance of IVA-M-EMK 
and IVA-SPICE as a function of the number of fused modalities. Table  2 displays the 
F1-scores as a function of the number of multi-modal data used to train the IVA trans-
formations and classification model. For this experiment, we still choose N = 100 and 
average all estimated SCVs to avoid potential over-fitting. For comparison, when the clas-
sification algorithm is trained using only high-level Image2text features, the F1-score is 
52.15% . When the classification algorithm is trained using only high-level topic features, 
the F1-score is 60.94% . When K = 2 , IVA-M-EMK outperforms IVA-SPICE in terms of 
the F1-score, except when the text and Image2text modalities are fused. As K increases, 
IVA-SPICE effectively exploits sparsity through the inverse covariance matrix (precision 
matrix) and, thus, reduces the effects of confounding joint features yielding better clas-
sification performance in all cases. In addition, while the superiority of IVA-M-EMK is 
evident when working with two modalities, as we can see from Table 2 it does not persist 
as the number of modalities analyzed increases. As the dimensionality of the probability 
space expands with an increase in the number of modalities (K), the estimation of the K−
dimensional probability densities that correspond to each estimated SCV becomes a chal-
lenging task. This is where IVA-SPICE becomes crucial in the joint feature generation pro-
cess. IVA-SPICE mitigates the effects of confounding joint features, resulting in improved 
classification performance compared to IVA-M-EMK. Hence, IVA-SPICE emerges as a 
valuable approach for handling the complexities introduced by higher-dimensional prob-
ability spaces and multiple modalities.



2202 Machine Learning (2024) 113:2183–2205

1 3

5  Conclusion

This study highlights five interesting directions that can be explored in future work. First, 
although the explainability of IVA has been addressed in Damasceno et  al. (2022), in 
future work, we plan to create formal settings where humans can evaluate whether a set 
of extracted features has human-identifiable semantic coherence. These quantitative meth-
ods have been similarly used for measuring semantic meaning in inferred topics (Chang 
et al., 2009). By developing human-based evaluation metrics, we will not only be able to 
assess the IVA joint representation space, but more importantly, we will be able to identify 
potential biases related to specific characteristics of the collected social media posts, ena-
bling us to correct our model before it is deployed at scale. Second, IVA-M-EMK and IVA-
SPICE can be integrated into more sophisticated and complex classification systems such 
as those based on deep neural networks to further improve classification performance. The 
flexibility to integrate IVA algorithms into any classification system stems from the fact 
that the proposed IVA algorithms are unsupervised methods and are independent of the 
choice of the classification algorithm. Third, as mentioned previously, future work includes 
further optimization of the method to provide linear scalability on cluster computing 

Table 2  Performance comparison in terms of F1-score for different number of modalities fused to train the 
classification model

When K = 2 , we combine 4!

2!2!
 modalities, similar for K = 3

Bold values denote the highest level of performance

Modalities (K) IVA F1

K = 2 : Text and Image IVA-M-EMK 77.45%
IVA-SPICE 67.92%

K = 2 : Text and Topic Modeling IVA-M-EMK 57.25%
IVA-SPICE 53.45%

K = 2 : Text and Image2text IVA-M-EMK 51.40%
IVA-SPICE 56.97%

K = 2 : Image and Topic Modeling IVA-M-EMK 72.59%
IVA-SPICE 63.25%

K = 2 : Image and Image2text IVA-M-EMK 73.45%
IVA-SPICE 66.37%

K = 2 : Topic Modeling and Image2text IVA-M-EMK 53.20%
IVA-SPICE 48.71%

K = 3 : Text, Image, and Image2text IVA-M-EMK 61.73%
IVA-SPICE 69.43%

K = 3 : Text, Image, and Topic Modeling IVA-M-EMK 58.43%
IVA-SPICE 67.99%

K = 3 : Text, Image2text, and Topic Modeling IVA-M-EMK 55.71%
IVA-SPICE 62.95%

K = 3 : Image, Image2text, and Topic Modeling IVA-M-EMK 62.07%
IVA-SPICE 68.58%

K = 4 : Text, Image, Image2text, and Topic Modeling IVA-M-EMK 61.22%
IVA-SPICE 73.01%
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environments, exploiting distributed CPU and GPU-based programming frameworks, as 
well as implementing parallel versions of all IVA algorithms. Fourth, we are interested in 
incorporating additional modalities into our study since, as we demonstrated in this work, 
the multivariate data fusion model based on IVA-SPICE provides enhanced detection per-
formance as the number of modalities increases. Examples of additional modalities include 
those based on videos or metadata. Last, we propose to study the convergence of our new 
IVA algorithms and derive the optimal conditions for both IVA-M-EMK and IVA-SPICE 
on the space of probability density functions.
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