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ABSTRACT

The analysis of multiple sets of data, such as multi-subject or multi-
modal data, is crucial for many computer science and engineering
problems. The primary objective in such problems is to extract rele-
vant features for machine learning tasks, commonly classification or
detection tasks. Independent vector analysis (IVA) has emerged as a
powerful technique for multi-modal learning and feature extraction
due to its minimal model assumptions, i.e., statistical independence
and ability to effectively maximize interactions within and across
datasets. Despite the appeal of minimizing model assumptions, prior
knowledge, such as sparse associations of features, is usually avail-
able. Therefore, incorporating sparsity constraints into IVA can mit-
igate the effects of confounding features promising to significantly
improve the utility of the final extracted features. This paper dis-
cusses integrating sparsity constraints into the IVA model through
the inverse covariance matrix and introduces a new algorithm, IVA
with sparse inverse covariance estimation (IVA-SPICE). We present
the parallel implementation of IVA-SPICE and demonstrate its effi-
cacy through simulations involving diverse parameters. Finally, we
demonstrate the usefulness of IVA-SPICE in multi-modal misinfor-
mation detection, highlighting its practical capabilities.

Index Terms— Independent Vector Analysis, Inverse Covari-
ance Estimation, Graphical Lasso, Multi-modal Misinformation De-
tection.

1. INTRODUCTION

The analysis of multiple sets of data is a vital process commonly
encountered in many problems in computer science and engineer-
ing. In such applications, data is collected from multiple sources,
including various subjects or modalities. To gain insights from these
multi-modal or multi-subject datasets, it is essential to identify the
relevant features that can be used for machine learning tasks such
as classification or detection. Identifying relevant features is crucial
because it determines the accuracy and reliability of machine learn-
ing models. Furthermore, by analyzing data from multiple sources,
one can identify patterns and correlations that might be missed when
analyzing single datasets. As a result, this can enhance the accuracy
and reliability of models, making them suitable for various appli-
cations including image and speech recognition, natural language
processing tasks, and recommendation systems.

With its well-structured formulation, independent vector anal-
ysis (IVA) provides an ideal starting point for developing effective
methods for the analysis of multiple sets of data [1]. By estimating
joint features, IVA possesses the capability to effectively capture dis-
tinctive characteristics present in multi-modal data. These features
can then be used to improve the performance of machine learning

tasks [2, 3]. By establishing a source component vector (SCV), IVA
facilitates a smart integration of various datasets, enabling one to
take full statistical information across multiple data sets and promot-
ing efficient multi-modal learning. The goal in multi-modal feature
extraction using IVA is to estimate joint features such that each SCV
is maximally independent of all other SCVs. Although this might
be a natural assumption in many problems, it might be too strong
of an assumption in certain applications. Incorporating reliable and
meaningful prior information about the associations of joint features
can result in better estimation of each SCV, and thus, its correspond-
ing estimated covariance matrix or precision matrix will better re-
veal sparse associations between extracted low dimensional features
across the modalities.

In this paper, we discuss a popular technique for effectively
estimating the precision matrix — inverse covariance matrix —
based on a lasso penalty applied to the inverse covariance matrix [4].
We present how to effectively use it to discover sparse interactions
among the features within an SCV. This work makes several con-
tributions. First, we demonstrate how to integrate graphical lasso
into the IVA formulation under the assumption that each SCV fol-
lows a multivariate Gaussian distribution. Next, we present a novel
IVA algorithm, IVA with sparse inverse covariance estimation (IVA-
SPICE), which can be used for joint feature extraction when sparse
interactions, i.e., conditional statistical dependencies, among the
features within each SCV exist. In this study, we introduce a parallel
implementation of IVA-SPICE and showcase its efficacy through
simulations involving diverse parameters. Additionally, we demon-
strate the usefulness of IVA-SPICE in multi-modal misinformation
detection.

2. METHODS
2.1. Independent vector analysis (IVA)

Using random vector notation, let each dataset x[k], k = 1, ...,K be
a linear mixture of N statistically independent sources

x[k] = A[k]s[k], k = 1, ...,K, (1)

where A[k] ∈ RK×K , k = 1, ...,K are invertible mixing ma-
trices and s[k] = [s

[k]
1 , ..., s

[k]
N ]⊤ is the vector of latent sources for

the kth dataset. The nth source component vector (SCV) sn =

[s
[1]
n , ..., s

[k]
n ]⊤, can be defined by concatenating the nth source from

each of the K datasets. The goal of IVA is to estimate K demixing
matrices to yield source estimates y[k] = W[k]x[k], such that each
SCV is maximally independent of all other SCVs.

The IVA optimization parameter is defined as a set of demix-
ing matrices W[1], . . . ,W[K], which can be collected into a three-
dimensional arrayW ∈ RN×N×K and can be estimated through the
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minimization of the IVA objective function given by

JIV A(W) =

N∑
n=1

H(yn)−
K∑

k=1

log
∣∣∣det(W[k]

)∣∣∣+ C. (2)

Here H(yn) denotes the differential entropy of the estimated nth
SCV that serves as the term for modeling the sparse associations of
the multi-modal joint features.

Optimizing the objective function (2) over the entire range of
invertible matrices presents challenges in terms of convergence, in-
corporation of sparsity constraints, and efficiency. To address this
issue, a widely used decoupling technique [5, 6] is employed, which
divides the minimization of (2) into a series of sub-problems. This
technique involves minimizing the objective function separately for
each row vector w[k]

1 , . . . ,w
[k]
N of the demixing matrix. By individu-

ally optimizing the cost function with respect to each row vector, we
simplify the integration of sparsity constraints into the IVA frame-
work and facilitate the implementation of parallel IVA algorithms.
This work aims to provide solutions for these particular aspects.

2.2. Decoupling trick, gradient, and update rule

By following the work from [5], we mathematically demonstrate the
decoupling trick. To simplify the notation, we start by consider-
ing the cost function (2) without the superscript [k]. Let Wn =

[w1, . . . ,wn−1,wn+1, . . . ,wN ]⊤ ∈ R(N−1)×N denote the matrix
that contains all rows of W except the nth one. Since the deter-
minant of a matrix is invariant under row permutation up to a sign
ambiguity, the square of the det(W) term in (2) is written as

det(W)2 = det(WW⊤) = det

([
Wn

w⊤
n

] [
Wnw

⊤
n

])
= det

([
WnW

⊤
n Wnwn

w⊤
nW⊤

n w⊤
nwn

])
= det(WnW

⊤
n )w⊤

n (I−W⊤
n (WnW

⊤
n )−1Wn)wn,

where the term Hn = I−W⊤
n (WnW

⊤
n )−1Wn is the orthogonal

projection onto the null space of Wn. By definition, the matrix Hn

is rank one, and thus, Hn = hnh
⊤
n , where hn is perpendicular to

all row vectors of Wn. Thus,
| det(W)| =

√
det(WnW⊤

n )2w⊤
n hnh⊤

nwn

= |det(WnW
⊤
n )||(h⊤

nwn)|. (3)

Therefore, by reintroducing the superscript [k], the cost function (2)
can be written as

JIV A(w
[k]
n ) =

N∑
n=1

H(yn)− log |(h⊤
nw

[k]
n )|

− log |det((W[k]
n )(W[k]

n )⊤)| −H(x[k]), (4)

where the terms H(x[k]) and log | det((W[k]
n )(W

[k]
n )⊤)| are inde-

pendent of w[k]
n . The gradient of (4) w.r.t. w[k]

n is given by
∂JIVA

∂w
[k]
n

= E
{
ϕ[k]
n (yn)x

[k]
}
− h

[k]
n(

h
[k]
n

)⊤
w

[k]
n

. (5)

Thus, the estimate of each W[k] can be determined w.r.t. each row
vector w[k]

n , n = 1, . . . , N independently by using the gradient up-
date rule

(w[k]
n )new ← (w[k]

n )old − γ
∂JIV A(w

[k]
n )

∂w
[k]
n

. (6)

As can be seen in (6), each gradient direction depends on the cor-
responding estimated probability density of each SCV, and if sparse
associations within an SCV exist, the IVA algorithm may experience
sub-optimal convergence or even divergence due to inaccurate esti-
mation of the probability density for each SCV.

2.3. IVA-SPICE

Incorporating prior knowledge about the sparse associations of the
underlying features within an SCV can result in a better model
match. This will result in a better estimation of the SCVs, and
thus, its corresponding estimated precision matrices will better re-
veal sparse associations between extracted low dimensional features
across the multiple sets of data. To identify the sparse associa-
tions among the underlying joint features, a logical approach is to
enforce a multivariate Gaussian model on each sample covariance
matrix (SCV) by utilizing a sparse inverse covariance matrix as a
parameterization. [4].

Therefore, under the assumption that each SCV follows a multi-
variate Gaussian distribution we have that

ϕ[k]
n (yn) = y⊤

nΣ−1
n ek, (7)

where ek is the unit vector. Therefore, the gradient of (4) with re-
spect to each row vector w[k]

n of W[k] is given by

∂JIVA

∂w
[k]
n

= E
{
x[k]y⊤

n

}
Σ−1

n ek −
h
[k]
n(

h
[k]
n

)⊤
w

[k]
n

. (8)

Utilizing the inherent properties of the precision matrix presents
valuable opportunities for the application of IVA. The sparsity of
each precision matrix Σ−1

n becomes an informative characteristic,
as it captures the conditional dependencies among the underlying
features within an SCV by representing them as zero values in the
inverse covariance [7, 8]. Leveraging this sparsity reduces the im-
pact of confounding joint features and facilitates the identification
of essential relationships. Nevertheless, the precise estimation of
each Σ−1

n associated with the SCVs is of utmost importance. Accu-
rate estimation is crucial not only for capturing sparse associations
among features but also for ensuring optimal performance in IVA as
a whole.

Input: X ∈ RN×V ×K

1 For each k = 1, ..,K, initialize W ∈ RN×N

2 for n = 1:N do
3 Estimate Σ−1

n using graphical lasso to fully
characterize ϕ

[k]
n (yn) in (7)

4 Compute h
[k]
n for k = 1, ...,K

5 for k = 1:K do
6 Calculate the derivative ∂JIVA

∂w
[k]
n

(8)

7 (w
[k]
n )new ← (w

[k]
n )old − γ ∂JIVA

∂w
[k]
n

8 end
9 end

10 JIVA =

N∑
n=1

H(yn)−
K∑

k=1

log
∣∣∣det(W[k]

)∣∣∣
11 Repeat steps 3 to 12 until convergence inW
12 returnW

Algorithm 1: Pseudo-code of the IVA-SPICE algorithm

Graphical lasso is a regularized maximum likelihood estimation
approach that uses ℓ1 penalty to encourage sparsity in the inverse
covariance matrix [4]. It solves the optimization problem using con-
vex optimization techniques, such as coordinate descent or proxi-
mal gradient descent, and has good optimality conditions. Given
that graphical lasso estimates Σ−1

n effectively and due to its effi-
ciency compared to other approaches, we integrate this estimation
technique into the IVA-Gaussian (IVA-G) [5] algorithm and develop
a new IVA sparse-based algorithm: IVA with sparse inverse covari-
ance estimation, or IVA-SPICE.
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Fig. 1. The performance is compared in various scenarios based on the average Joint ISI. (Left) Joint ISI as a function of number of samples
for N = 10,K = 4 and d = 1. (Center) Joint ISI as a function of number of samples for N = 10,K = 32 and d = 1. (Right) Joint ISI as a
function of number of datasets for N = 10, d = 1 and V = 10, 000.

The pseudo-code for the IVA-SPICE algorithm is provided in
Algorithm 1. The core component of this algorithm is the loop out-
lined in lines 2-9, emphasizing the importance of accurately estimat-
ing each Σ−1

n for capturing sparse associations among the under-
lying joint features. Moreover, it is notable that the computational
complexity of IVA-SPICE primarily resides within lines 2-9 of Al-
gorithm 1 and as we see in later section, distributing individual iter-
ations of the main loop among separate computational resources is
highly desirable to minimize the overall execution time.

3. NUMERICAL EXPERIMENTS

3.1. Results based on simulated data
In the initial set of our experiments, we assess the effectiveness of
IVA-SPICE using simulated input data that is sparse. In all experi-
ments, the nth sample covariance matrix is a K-dimensional, zero-
mean multivariate Gaussian random vector that is characterized by a
sparse inverse covariance matrix Σ−1

n . The sparsity of the matrix is
determined by the density of non-zero elements. In our experiments,
we investigate the impact of varying the density d on the covariance
matrix sparsity of the generated data. The density ranges from 0 to
1, where 0 denotes non-sparsity and 1 represents the highest level of
sparsity. We also consider the number of components N , datasets K,
and samples V as variables. To evaluate the performance, we em-
ploy Joint ISI, a global metric that measures separation quality when
the ground truth is available. A Joint ISI value of zero indicates per-
fect separation. We conduct ten trials and report the averaged results.
The results are averaged over ten trials. For all of our experiments,
we compare IVA-SPICE with several IVA algorithms. Different IVA
algorithms explicitly model the underlying sources by assuming dif-
ferent probability densities for the underlying SCVs. Specifically,
the IVA-L algorithm [9] incorporates higher order statistics (HOS)
and assumes a Laplacian distribution for the underlying SCVs. On
the other hand, IVA-G [5] leverages linear dependencies but does
not consider HOS. Meanwhile, IVA-A-GGD [10] is a more com-
prehensive IVA implementation that takes both second and higher
order statistics into account. This algorithm assumes a multivari-
ate generalized Gaussian distribution (MGGD) for the underlying
SCVs, where multivariate Gaussian and Laplacian distributions are
considered as special cases by estimating the distribution’s parame-
ters. Finally, the most flexible IVA algorithm, IVA-M-EMK [11], is
based on the multivariate maximum entropy principle, allowing it to
model a wide range of PDFs.

Figure 1 presents the source separation performance varying the

Fig. 2. The performance comparison is based on the average Joint
ISI, varying with the density of non-zero values on the true precision
matrices. (Left) N = 10,K = 4, V = 1, 000. (Right) N =
10,K = 4, V = 10, 000.

number of samples from 100 to 10, 000 with N = 10, K = 4,
d = 1 and N = 10, K = 32, d = 1, respectively. Moreover, in the
right plot in Figure 1 with N = 10, d = 1, and V = 10, 000, we
can see that increasing the number of datasets is negligible. For this
scenario, where the density of non-zero values is held at 1, we can
see that IVA-SPICE attains superior separation results in the sparser
setting. On the other hand, in Figure 2, with K fixed at 4, we main-
tain N = 10 for the first column while using V = 1, 000 and
V = 10, 000 for the second. From the results, we can observe that
IVA-SPICE outperforms all other IVA algorithms in scenarios where
there is inherent sparsity in the sample covariance matrices. In ad-
dition, an essential feature of IVA-SPICE is that it demonstrates a
considerable improvement in its source separation performance with
a notable decrease in error rates as more samples become available.
In our experiments, enlarging the sample size is the optimal solution
as IVA operates within a maximum likelihood framework [11].

3.2. Parallel implementation of IVA-SPICE

Machine learning and signal processing tools are expected to pos-
sess the capability to handle large-scale data commonly encountered
in real-world applications. As previously discussed, the computa-
tional complexity of IVA-SPICE primarily lies within the lines 2-9
of Algorithm 1. To decrease the overall execution time, it is de-
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Fig. 3. Scalability experiments with distributed IVA-SPICE in terms of execution time (left), SpeedUp (center), and ScaleUp (right).

sirable to distribute separate iterations of the main loop to different
computational resources.

Our optimized IVA implementation leverages Pandas User-
Defined Function (Pandas UDFs) and the Apache Spark framework
to enable distributed computation [12].Pandas UDFs, alternatively
referred to as vectorized UDFs, are custom functions that leverage
Apache Arrow for data transfer and enable vectorized operations.
These UDFs have the potential to enhance performance by up to
100x when compared to Python UDFs that operate on a row-by-row
basis. Specifically, in our work, the graphical lasso of the IVA loop
is implemented as a Pandas UDF adopting iterators on Pandas series.
Algorithmically, processing steps prior to the graphical lasso loop
are executed in a sequential manner. After then, our strategy loads
the entire dataset as a distributed Spark DataFrame via PySpark,
i.e. the Python Apache Spark API. Embedding the graphical lasso
loop in a Pandas API allows the driver node, which is in charge of
orchestrating the computational workload, to divide the DataFrame
into partitions and assign them to different executors in the com-
putational cluster. A Python interpreter runs on each executor and
trains the graphical lasso model on its partition, using all available
local cores to run vectorized operations on the Pandas series in a
parallel fashion. Once a partition has been processed by an execu-
tor, it is returned as a result to the driver, which collects all partial
results and combines them to obtain the final result. Pseudo-code of
our training strategy is described in Algorithm 2. Post-processing
steps following the graphical lasso loop are executed in a sequential
manner.

The driver initializes the number of partitions based on the clus-
ter configuration C, which defines the number of executors, the num-
ber of cores for each executor, and the amount of RAM memory for
each executor. To evaluate the scalability of our solution, the ex-
periments feature a cluster configuration involving up to 8 executors
nodes, each equipped with 8 cores and 16GB of RAM memory. Ex-
periments in Figure 4 show the execution time (left), the SpeedUp
(center), and the ScaleUp (right).

SpeedUp is computed as the ratio between the time execution
with the single-executor implementation, and the corresponding
execution time with multiple executors, with an increasing num-
ber of sources (N ). ScaleUp is obtained simultaneously increasing
the problem size (N : 10, 20, 30, 40) and the number of executors:
(1, 2, 4, 8), and computing ratios between execution times with any
configuration vs. the initial one with N = 10 and 1 executor. For
instance, the ScaleUp for x = 2 is computed as the ratio between
the execution time with N = 20 – 2 executors, and the time with
N = 10 – 1 executor. While the ideal curve for SpeedUp is a
45-degree line, the ideal curve for ScaleUp is a flat line (y = 1),
which is rarely obtained in practice. In the results, we observe that

the SpeedUp increases as the number of sources N and the number
of executors increases. The maximum SpeedUp achieved is 2.96x,
with 8 executors and N = 80.

Input: D – entire dataset, C – cluster configuration
1 P = Driver initializes partitions for D based on C
2 for Pi ∈ P do

// Executor computation (parallel):
3 GLi = Train graphical lasso model on Pi

4 Ri = [GLi.cov, GLi.inv]
5 return Ri

6 end
// Results aggregation on driver:

7 R = R1 ∪R2 ∪ · · · ∪Rk

8 return R
Algorithm 2: Distributed pseudo-code (graphical lasso loop)

Overall, the results highlight that a significant reduction of the
execution time can be obtained with the distributed implementation
of IVA-SPICE as more sources are added to the data and more ex-
ecutors are available. It is worth noting that, in our experiments, no
differences in the ISI results were observed for the single-executor
vs. multi-executor implementation. As a result, the reduction in the
execution time achieved with the distributed implementation does
not come at the cost of reduced accuracy for the IVA-SPICE con-
verging solution.

4. APPLICATION TO MISINFORMATION DETECTION

We demonstrate the usefulness of IVA-SPICE in multi-modal misin-
formation detection. We formulate the problem of joint feature gen-
eration for multi-modal misinformation detection as an IVA problem
in the following way. Using matrix notation, let X[k] ∈ Rd×V is the
kth observation matrix from kth modality, where d denotes the num-
ber of initial high-level feature vectors in the kth modality and V de-
notes the total number of samples. As we see in the next section, ex-
amples of high-level features include pre-trained word embeddings,
pre-trained image embeddings, topics, and captions. The model is
given by X[k] = A[k]S[k], k = 1, ...,K, where A[k] ∈ Rd×N

is the kth mixing matrix and S[k] ∈ RN×V are latent variable es-
timates which in our setting, correspond to the kth set of feature
estimates and are estimated using IVA-SPICE. The sparsity of each
Σ−1

n becomes an informative characteristic, as it may capture the
sparse associations among the underlying joint features. The ma-
chine learning algorithm used for detecting misinformation will be
trained using the estimated joint features.

4.1. Dataset and high-level feature extraction
For this work, we utilize the final processed training and test datasets
from our previous study [3], which were created using the MediaE-
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val2016 Image Verification Corpus [13]. The datasets used in this
study comprise distinct sets of labeled training and test tweet data,
specifically from the 2016 vintage. The training dataset consists of
tweets related to a specific set of events that are entirely different
from those discussed in the tweets found in the test dataset. Each
tweet record is assigned a label indicating whether it is categorized
as “fake” or “real”, with ”fake” tweets including multimedia content
that misrepresents the referred event [13].

The working datasets include records with a single correspond-
ing image. The text data consists of pre-processed text without emoji
characters, stop words, URLs, Twitter handles, time stamps, select
punctuation, and words less than two characters. The text data was
normalized by lowercasing each word, reducing multi-spaces to one
space, and lemmatizing the words. The dataset includes only tweets
identified as using English or a similar language using the Langid
Python package and the International Organization for Standardiza-
tion (ISO) code for languages. The text data does not include tweets
that were denoted as being retweeted. Records that resulted in null
values during prior feature extraction are not present. The image
data was pre-processed by resizing the images to 224x224 pixels
and normalizing them.

The training dataset comprises 9,140 tweet records, involving
352 distinct images, and representing 15 different events. Out of
these training tweets, 5,127 are classified as fake, while 4,013 are
classified as real. Among the 15 events in the training dataset, five
events have a mix of both real and fake tweets, while the remaining
ten events exclusively consist of fake tweets. On the other hand, the
test dataset consists of 796 tweet records, associated with 92 unique
images, and representing 23 distinct events. It’s important to note
that the events included in the training data and testing data do not
overlap. In the test dataset, 467 tweets are categorized as fake, while
329 tweets are classified as real. Out of the 23 events, seven events
have a combination of real and fake tweets, one event has only real
tweets, and 15 events consist solely of fake tweets.

To represent the text in each tweet record, we utilize a 300-
dimensional Word2Vec embedding vector [14] and extract features
from the datasets. By averaging the word embedding vectors of
the tweet’s words, we effectively capture the essence of the tweet.
This feature was created using a Word2Vec model trained on the
Google News corpus. We include a 4,096-dimensional fully con-
nected layer from a pre-trained VGG-16 model for each image as-
sociated with an individual tweet record. We also create a feature
we call ”Image2text” using an Image Captioning PyTorch model
[15] pre-trained with ResNet101 features to generate captions for
each image in our datasets. Then, we use the same Word2Vec model
and averaging method previously used to create a 300-dimensional
Word2Vec embedding for each generated caption. The final feature
we create and utilize is a 200-dimension vector representing the top
200 topics assigned to a tweet using topic modeling. To conduct the
topic modeling, we utilize the term frequency-inverse document fre-
quency (TF-IDF) vectorizer to generate a TF-IDF matrix for the text
from the tweets, using a vocabulary that consists of words that are in
less than 95 percent and in more than one percent of the tweets in the
datasets. We then apply non-negative matrix factorization (NMF) to
assign 200 topics to each tweet. We use 200 topics to ensure that
the feature’s dimensions are compatible with our other matrices to
conduct our analysis.

4.2. Classification procedure

The classification process comprises four stages. In the first stage,
we construct our set of tweets as follows. We represent the training
observation matrices for each modality with X

[k]
train ∈ Rdk×Vtrain

where dk denotes the number of initial high-level feature vectors
in each modality and Vtrain denotes the number of training tweets.
Similarly, X[k]

test ∈ Rdk×Vtest denotes the corresponding testing ob-
servation matrices. In the second stage, the mean from each dataset
is removed so they are centered, and PCA is applied to each X

[k]
train,

for k = 1, 2, . . . ,K. For the PCA step, we use an order N , which,
in our setting, denotes the number of features from each modality.
Then, for each k = 1, 2, . . . ,K, we obtain X̂

[k]
train ∈ RN×Vtest and

vertically concatenate each X̂
[k]
train to form a three dimensional ar-

ray X̂train ∈ RN×Vtrain×k. In the third stage, we perform IVA on
X̂train, and since we have K modalities, IVA provides K demixing
matrices W[k] ∈ RN×N , for k = 1, 2, . . . ,K. Then, using the esti-

mated demixing matrices we generate Y
[k]
train = W[k]

(
X̂

[k]
train

)⊤
,

for k = 1, 2, . . . ,K. The training dataset Ytrain is formed by aver-
aging the estimated SCVs, which can be obtained by concatenating
the estimated sources from Y

[k]
train, for k = 1, 2, . . . ,K. It is im-

portant to note that Ytrain includes all the extracted features from
the multi-modal data, which is used to train the classification model.
Conversely, the testing dataset is created by subtracting the training
mean from each multi-modal testing dataset and applying the PCA
transformations derived from the training phase. Additionally, the
demixing matrices from the training phase are used to transform the

testing datasets in the following manner, Y[k]
test = W[k]

(
X̂

[k]
test

)⊤
,

for k = 1, 2, . . . ,K, where Y
[k]
test ∈ RN×Vtest . Finally, the test-

ing dataset Ytest is formed by averaging the estimated SCVs, which
can be obtained by concatenating the estimated sources from Y

[k]
test,

for k = 1, 2, . . . ,K. In the fourth stage, we train the classifica-
tion model using (Ytrain)

⊤. The specific form of the classification
model is not critical as our IVA-based fusion approach is indepen-
dent of the classification procedure. Nonetheless, we provide an il-
lustrative example using support vector machines (SVMs), which
have exhibited dependable results in various applications, particu-
larly when dealing with smaller datasets [16]. Following the train-
ing of the classification model, we assess its performance utilizing
an unseen dataset, (Ytest)

⊤. In order to maintain consistency, a
grid search cross-validation with a five-fold scheme is utilized for
hyper-parameter optimization, model training, and testing in all ex-
periments. To generate well-converged statistics, the entire process
is repeated five times, with shuffling occurring prior to each iteration.

4.3. Classification performance

In the initial set of experiments, we evaluate IVA-SPICE against sev-
eral other IVA algorithms, measuring the F1-score as the number of
training samples increases. Specifically, we consider the scenario
where K = 4 and N = 100. In addition, to generate the final joint
features, we average all estimated SCVs to prevent possible over-
fitting. Based on the information depicted in the left plot of Figure
4, it can be deduced that IVA-SPICE surpasses all other IVA algo-
rithms as the number of training samples rises. It is worth noting,
that in the poor sample case, IVA-SPICE has the worst performance,
and this is due to the sub-optimal estimation of the sparse inverse
covariance matrix. IVA-M-EMK is invariant to the increase in the
training samples. Both IVA-G and IVA-L do not yield good per-
formances as they are not suitable to model the sparse underlying
associations within each SCV. IVA-SPICE is an excellent fusion ap-
proach for misinformation detection, as demonstrated by its high F1-
score with respect to the number of training tweets. Our approach’s
classification results are on par with those obtained in related studies,
including [17].
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Fig. 4. (Left) F1-score is employed as a metric for performance comparison in both the IVA-based classification model, considering varying
numbers of training samples. (Right) The performance is compared in terms of the F1-score, considering different numbers of modalities
fused to train the classification model. When K = 2, we combine 4!

2!2!
modalities, similar for K = 3.

Our misinformation data fusion approach enables the evaluation
of each modality’s contribution and the identification of the opti-
mal combination of modalities for achieving the highest prediction
score. To demonstrate this, we evaluate the performance of IVA-
SPICE based on the number of fused modalities. The right plot in
Figure (4) illustrates the F1-scores as a function of the number of
multi-modal data utilized to train the IVA transformations and clas-
sification model. In this experiment, we maintain N = 100, and av-
erage all estimated SCVs. As K increases, IVA-SPICE effectively
employs sparsity through the inverse covariance matrix (precision
matrix), reducing the impact of confounding joint features and pro-
viding superior classification performance in all fusion scenarios.

5. CONCLUSION

This study brings attention to various intriguing avenues for future
exploration. As evidenced in our findings, the utilization of the IVA-
SPICE multivariate data fusion model yields improved detection per-
formance with an increasing number of modalities. Consequently,
it would be beneficial to incorporate supplementary modalities like
video-based or metadata-based modalities in our investigation. Fi-
nally, we suggest determining the optimal conditions of IVA-SPICE
on the space of probability density functions.
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