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Abstract—Predictive models are essential in big data platforms
to tackle the needs of several real-world applications. However,
static models are known to be prone to obsolescence in dynamic
environments. While concept drift detection represents a viable
way to deal with this problem, it is scarcely explored in the con-
text of big data streams. In this paper, we propose a distributed
drift detection workflow based on the DDM algorithm paired
with a predictive model. Our workflow updates the predictive
model as soon as drifts are detected, adjusting to the most
recent data characteristics. To enable the analysis of large-scale
datasets, we leverage Pandas UDFs and Apache Spark, efficiently
distributing this workload across multiple worker node instances.
Our experiments on two real-world drift detection datasets show
the positive results obtained in terms of Speedup, Scaleup, and
a limited impact in detection delay in comparison to a single
worker node instance.

Index Terms—Drift detection, predictive modeling, distributed
systems, big data, Apache Spark.

I. INTRODUCTION

The integration of predictive models in big data platforms
and frameworks has shown promising results in domains char-
acterized by large-scale data such as weather [1], [2], vehicular
traffic [3], [4], and smart grids [5], [6]. However, a major pitfall
of such methods is that, without taking concept drift detection
into account, they are exposed to a number of scenarios
that undermine their robustness in evolving environments. For
instance, wrong predictions in stock prices due to concept drift
may cause catastrophic losses in the financial domain [7] [8].
As drifts in the data distribution occur, it is important to keep
predictive models updated, to prevent their rapid obsolescence.

Concept drift detection has become a recognized task in
a variety of real-world applications characterized by dynamic
environments with data streams, including cybersecurity, smart
grids, and settings that generate sensor data. Recent works
involve the refinement of concept drifts in modern settings
such as multi-class classification, multi-label data streams,
and ensembles. The work in [9] proposes a drift detection
method for binary classification settings that checks whether
data assigned to a given class occupies spaces considered
relevant to the other class. To this end, data is mapped into
a quadtree-based memory structure that provides knowledge

about which class (label) is dominant in a given region of the
feature space. The authors in [10] propose an unsupervised
concept drift detector leveraging dynamic ranking of temporal
label dependencies and data fusion to support the analysis
of multi-label data streams. Group concept drift for multiple
data streams is addressed in [11], where an online learning
algorithm using a distribution-free test statistic is proposed. A
recent application of concept drift detection and deep neural
model adaptation for next activity prediction in business data
streams is proposed in [12].

The authors in [13] devise a semi-supervised drift detector
based on an ensemble of classifiers with self-training and
dynamic classifier selection. Ensemble-based online concept
drift detection is also addressed in [14], where base classi-
fiers are trained on random subsets of features to create a
background ensemble that rapidly adapts to changes, adopting
self-adjusting bagging to enhance the exposure of difficult
instances from minority classes. The work in [15] proposes
an active weighted aging ensemble algorithm to react to
concept drift appropriately in an active learning setting with
limited budget. Another emerging thread of research works
is that of change detection and drift detection methods to
support continual/lifelong learning models. This capability
is particularly crucial in task-agnostic and task-free learning
settings [14], [16]–[22].

Despite the progress completed in concept drift detection
thanks to recent works on the subject, most of the research
thus far does not take into account big data streams and does
not tackle distributed learning capabilities of the underlying
algorithms’ approaches. As a result, the current solutions are
not scalable, and appear inadequate for the monitoring and
analysis of large-scale data leveraging big data frameworks.

In this paper, we attempt to fill this gap by proposing a
distributed learning workflow based on the DDM drift detec-
tion algorithm, implemented in Apache Spark. The devised
workflow features the interaction of a predictive model and
a drift detector, which monitors the predictive model’s error
rate and detects concept drifts. As a drift is detected, the
predictive model is updated with the most recent available
data. Our distributed learning strategy adopts the Apache
Spark framework to perform model training and drift detection
in parallel on multiple worker nodes, allowing us to efficiently979-8-3503-2445-7/23/$31.00 ©2023 IEEE



analyze large-scale data streams. Our experiments with two
real-world datasets show the merit of the proposed solution in
terms of its detection delay and its scalability when compared
to single executor counterpart.

The paper presents the following structure: Section II de-
scribes our proposed approach in detail. Section III outlines
the analyzed datasets, the experimental setup, and discusses
the results of our experiments. Finally, Section IV wraps up
the paper by providing possible directions for future work.

II. METHOD

In this section, we describe our proposed distributed drift de-
tection approach. Drift detection with predictive modeling, and
distributed scheduling are described in separate subsections.
An overview of the proposed workflow is shown in Figures 1
and 2.

A. Drift detection with predictive modeling

DDM (Drift Detection Method) [23] is a concept drift
detection method that analyzes the error rate of a predictive
algorithm over time. It is based on the PAC learning model
premise, which assumes the error rate of a predictive algorithm
will decrease as the number of analysed samples increase, as
long as the data distribution is stationary. If the algorithm de-
tects an increase in the error rate that goes beyond a computed
threshold, two options are possible: a drift is detected, or the
algorithm warns the user that a drift may occur in the near
future, which is known as the warning zone.

Considering a data stream, where smin is the minimum
recorded standard deviation thus far, the detection algorithm
leverages the following time-variant information:

• pi: The error rate at time point i.
• si: The standard deviation at time point i.
The detection threshold is then computed as a function of

two statistics, obtained when (pi+si) is the minimum recorded
error rate: The conditions for entering the warning zone can
be formalized as:

pi + si ≥ pmin + 2 ∗ smin.

Similarly, the condition that triggers the detection of a concept
drift can be formalized as:

pi + si ≥ pmin + 3 ∗ smin.

DDM requires a predictive model for the continuous anal-
ysis of its error rate. To this end, in our work, we adopt the
Random Forest classifier [24]. The rationale for its adoption is
based on the high potential that ensemble-based and combina-
tion methods based on hybrid models can provide in contexts
with complex data characteristics, which naturally occur in
real-world data streams [8]. In such contexts, model ensembles
such as Random Forest generally provide better and more
consistent results than single models such as Support Vector
Machines [25]. Specifically, Random Forest is composed of
multiple decision trees that capture complex nonlinear rela-
tionships in the data, and it provides native mechanisms to
deal with overfitting, such as random feature selection and

bootstrap sampling. Additionally, it provides high robustness
to noisy data and outliers, which occur in real world data.
Another aspect worth consideration is that, since each tree in
the ensemble is independent, their training process can be run
in a multi-threaded fashion, leading to faster training phase and
improved computational efficiency, which is a salient aspect
in our workflow.

To implement our workflow, we leverage the DDM imple-
mentation in scikit-multiflow1 and the Random Forest classifier
implementation in scikit-learn2.
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Fig. 1. Graphical overview of the proposed approach for distributed drift
detection. A Spark driver node distributes data across different worker node
instances, where drift detection and predictive model’s training/update stages
occur. Partial results at each worker are returned to the driver, where the
complete set of drifts is obtained via aggregation.

B. Distributed scheduling

Our distributed workflow implementation leverages Pandas
User-Defined Function (Pandas UDFs) and the Apache Spark
framework to enable distributed computation [26]. Pandas
UDFs, also referred to as vectorized UDFs, are optimized
functions that utilize Apache Arrow for efficient data trans-
fer, enabling vectorized operations. This backing data format
allows Pandas UDFs to enhance performance by up to 100x
when compared to regular Python UDFs, which can only
perform tasks on a row-by-row basis. Specifically, in our
framework, the DDM drift detection and predictive model
training and update are implemented as a Pandas UDF, adopt-
ing iterators on Pandas series.

Our strategy loads the time series dataset in memory as
a distributed Spark DataFrame via PySpark, i.e. the Python
Apache Spark API. The driver node, which is in charge of or-
chestrating the computational workload, initializes the number
of partitions based on the cluster configuration, consisting of
the number of worker node instances/executors, the number

1https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.
drift detection.DDM.html?highlight=ddm

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html



...

DDM Drift
Detection

Train Predictive
Model

Model

Predict

Drift?

Update Model

Yes

Collect drifts
to driver node

Yes
End of
stream

Move to
next batch

No

Predictions

No

Fig. 2. Single worker node instance’s perspective of the distributed drift
detection workflow. Batch-oriented processing takes place, where the DDM
drift detection algorithm monitors the error rate of a predictive model,
triggering model updates as soon as a drift is detected. At the end of the
stream, the worker node instance returns the detected drifts to the driver node.

of cores for each instance, and the amount of RAM memory
for each instance. The driver nodes divides the DataFrame
into partitions and assigns them to different worker node
instances/executors available in the computational cluster.

A Python interpreter runs on each worker node instance
on its partition, using all available local cores to run iterative
operations on the Pandas DataFrame. A single worker node
instance’s perspective is graphically presented in Figure 2.

Each worker node is responsible for building and training a
separate DDM and Random Forest models. Once a partition
has been processed by a worker node instance, the set of drifts
detected by each worker node on the local partition is returned
to the driver, which collects and aggregates all partial results,
leading to the final result. The pseudo-code of our workflow
is described in Algorithm 1.

III. EXPERIMENTS

In this section we provide a description of the datasets
analyzed in our experiments, give details on our experimental

Result: Detected drifts D
Input: Time Series Data X
Distribute X = {B1, B2, . . . , BN} to all workers
foreach worker Wk ∈ {1, 2, . . . ,K} do in parallel

DWk
← {∅} Local drifts

m← train predictive model on B1 ← X[1]
foreach i ∈ {2, . . . , N} do

Bi ← X[i]
ŷBi
← m.predict(Bi)

(drift, td)← DDM(ŷBi
)

if drift then
DWk

← DWk
∪ td

m← m.fit(Bi−1)
end
if i==N then

return DWk

end
end

end
Algorithm 1: Pseudo-code of the distributed workflow for
model training and inference.

TABLE I
DATASETS ANALYZED IN OUR EXPERIMENTS.

RESAMPLED REFERS TO THE MAXIMUM REPLICATION FACTOR
CONSIDERED (OUTDOOR STREAM: 512, RIALTO: 32).

Dataset Instances Instances Features
(original) (resampled)

Outdoor Stream 4.000 2.048.000 21
Rialto 82.250 2.632.000 27

setup, and analyze the results obtained in terms of drift detec-
tion delay and scalability. Our code implementation is acces-
sible at: https://github.com/rcorizzo/distributed-drift-detection.

A. Datasets

We analyze the following real-world concept drift detection
datasets, also described in Table I:

• Outdoor Stream [27] contains images recorded by a
mobile device in a garden environment. The task is to
classify 40 different objects, each approached ten times
under varying lighting conditions affecting the color-
based representation. The objects are encoded in a nor-
malized 21-dimensional RG-Chromaticity histogram.

• Rialto [28] contains ten of the colorful buildings next
to the famous Rialto bridge in Venice, encoded in a
normalized 27-dimensional RGB histogram. Images are
obtained from time-lapse videos captured by a webcam
with fixed position. The recordings cover 20 consecu-
tive days during May-June 2016. Continuously changing
weather and lighting conditions affect the representation.

B. Setup and Metrics

In our experiments, we are interested in measuring the
effectiveness of our concept drift detection and predictive



TABLE II
EXECUTION TIMES WITH DIFFERENT CLUSTER CONFIGURATIONS (INSTANCES, CORES) FOR ALL ANALYZED DATASETS.

Rialto dataset
1 Instance 2 Instances 4 Instances 8 Instances 16 Instances

Factor 2 cores 4 cores 8 cores 2 cores 4 cores 8 cores 2 cores 4 cores 8 cores 2 cores 4 cores 8 cores 2 cores 4 cores 8 cores
1 30.45 31.40 34.44 19.88 22.03 24.49 19.81 22.03 26.84 26.85 35.71 47.48 38.69 50.16 54.48
2 48.61 49.15 54.29 29.16 31.46 35.17 28.30 32.03 34.13 21.72 27.19 34.18 33.34 47.73 56.78
4 80.99 82.79 92.59 46.34 49.34 54.97 45.62 50.18 53.11 30.64 36.33 44.76 26.77 35.28 48.25
8 152.14 153.48 169.32 81.93 85.04 95.43 79.49 85.35 89.38 48.33 54.25 62.61 35.47 44.31 58.33
16 289.61 293.48 328.29 154.86 154.94 176.87 123.89 158.61 160.30 82.55 90.75 97.86 54.50 63.42 77.46
32 572.22 573.62 645.27 293.97 299.87 333.92 283.97 302.45 302.59 151.64 162.98 169.13 89.51 99.89 113.99

Outdoor Stream dataset
1 Instance 2 Instances 4 Instances 8 Instances 16 Instances

Factor 2 cores 4 cores 8 cores 2 cores 4 cores 8 cores 2 cores 4 cores 8 cores 2 cores 4 cores 8 cores 2 cores 4 cores 8 cores
16 34.22 37.24 39.36 26.83 30.41 35.56 64.05 74.83 92.25 102.21 89.85 108.06 93.93 85.48 58.37
32 48.25 52.05 56.40 35.01 38.87 45.84 55.67 61.59 73.60 74.87 89.08 113.68 158.23 187.86 101.64
64 75.70 80.07 87.93 49.97 53.40 62.46 47.09 51.88 58.27 56.34 72.60 86.97 178.12 130.72 149.94
128 131.80 132.65 147.43 76.32 81.90 93.29 74.05 79.32 86.08 83.96 91.52 117.64 115.34 144.42 195.52
256 236.08 241.72 268.93 133.18 134.20 155.52 125.37 133.76 138.11 75.82 83.58 94.71 98.41 120.26 158.38
512 456.71 458.34 519.70 239.94 243.08 278.85 222.55 236.33 238.35 124.16 134.44 145.21 79.62 90.19 108.47

model update pipeline. To this end, we quantitatively measure
the drift detection delay and the scalability of the workflow,
comparing the execution time with a single worker node
instance with multiple worker node instances. Our experiments
involve multiple cluster configurations with 1, 2, 4, 8, and 16
worker node instances. To perform a fine-grained analysis of
scalability, we also experiment with different configurations
of the number of cores at each worker node instance (2, 4, 8).
Each instance is equipped with 8 GB of RAM memory.
For scalability, we compute Speedup and Scaleup metrics.
Specifically:

• Speedup is computed as the ratio between the time
execution with the single-executor implementation, and
the corresponding execution time with multiple worker
node instances/executors.

• Scaleup is obtained by simultaneously increasing the
problem size and the number of node instances/executors,
and computing ratios between the execution time of any
configuration with respect to the execution time with
the initial configuration, i.e. simplest problem size and
a single worker node instance/executor.

C. Results discussion

We performed our experiments on two real-world drift
detection datasets (more information is reported in Table I)
with a non-distributed execution (single worker node instance),
and with a distributed execution (2, 4, 8, and 16 worker node
instances). Our scalability experiments are aimed at assessing
the benefit of our distributed job scheduling workflow in terms
of the reduction in execution time that can be achieved with
multi-worker node instances. We remark that, the ideal curve
for Speedup is a 45-degree line, whereas the ideal curve for
Scaleup is a flat line (y = 1), which are rarely obtained in
practice, due to computational and network bottlenecks that
normally occur in distributed workflows.

Experiments in Table II present the execution times obtained
with different cluster configurations. We consider executions

with multiple replication factors, where data rows are repli-
cated to evaluate the effectiveness of our workflow on more
challenging conditions with larger dataset sizes. For each
replication factor, we run experiments 5 times and report
averaged results. Figures 3 and 4 show the Speedup (top),
Scaleup (center), and percentage of delay (bottom). Results in
these figures are obtained considering a replication factor of
8x (Rialto) and 512x (Outdoor Stream).

By analyzing the execution times in Table II, we observe
that the execution time increases as the number of cores on
each executor increases from 2 to 4 and 8. This result suggests
that larger-sized executors are not a good option for this
specific workflow, which suffers from the overhead of data
distribution. We also argue that this result may partially depend
on the simplicity of the workflow, and that this outcome could
change with the adoption of a more complex predictive model
which fully leverages multi-threaded computation. However,
comparing results with 1, 2, 4, 8, and 16 instances, highlights
the merit of the distributed implementation. We observe a
significant reduction in the execution time as more worker
node instances are utilized in the majority of cases. This is
particularly true with higher values of replication factor, i.e.
when the data being analyzed is large enough to benefit from
the distributed workflow.

Results in Figures 3 and 4 show that the Speedup factor
increases linearly as the number of worker node instances is
increased by a factor of 2. The maximum Speedup achieved is
4.28x, with 16 executors (Rialto) and 5.73x with 16 executors
(Outdoor Stream). One exception can be observed with 4
instances, where apparently no Speedup is achieved with
respect to the configuration with 2 instances.

For Scaleup results we adopt different replication factors
as problem sizes: 1, 2, 4, 8, 16 (Rialto), 32, 64, 128, 256, 512
(Outdoor Stream). The results depict a sub-optimal scenario
where we observe decreasing values with an increasing num-
ber of worker node instances, largely from a visible drop from
2 to 4 instances. This result can be explained considering that,
with problem size growth, the data transfer across worker node
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Fig. 3. Scalability results on Rialto dataset: Speedup (top), Scaleup (center),
and percentage of delay (bottom).
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instances also increases, leading to an overhead that factors in
a higher execution time. However, Scaleup values still lie in a
satisfactory range considering the challenges presented by the
distributed workflow.

Results for detection delay show that the distributed na-
ture of the workflow does not result in significant deviation
between single and multi-worker instances. It can be ob-
served that, for both datasets, detection delays converge to
comparable values lying within a small range. Considering
that each worker node instance performs drift detection and
model training independently, the stability of our extracted
results indicate that each worker node instance is provided
with enough data to reliably compute distribution estimates
for the DDM algorithm and to train an accurate Random
Forest model. Consequently, the distributed workflow does
not significantly alter the drift detection delay compared to
its single-instance counterpart.

IV. CONCLUSION

In this paper, we proposed a distributed drift detection
workflow for big data streams. We devised a strategy based
on the DDM drift detection algorithm, paired with a Random
Forest predictive model. Our approach adaptively updates the
predictive model as soon as drifts are detected, preventing it
from obsolescence. We leverage Pandas UDFs and Apache
Spark to efficiently distribute the workload, partitioning the
data across multiple worker node instances, which run the
workflow in a parallel fashion. Our results on two real-world
datasets show the effectiveness of our solution in terms of
Speedup, Scaleup, and detection delay. As future work, we
will investigate an extension of our approach to edge and
federated learning settings. We will also analyze alternative
drift detection approaches and more complex predictive mod-
els, and assess their suitability within our workflow.
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